1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
4 years ago
15

Maverick and goose are flying a training mission in their F-14. They are flying at an altitude of 1500 m and are traveling at 68

8 m/s (mach 2) . They release their bomb and head for home. How long will it be before the bomb hits the ground?
Physics
1 answer:
den301095 [7]4 years ago
6 0

Answer:

The bomb will remain in air for <u>17.5 s</u> before hitting the ground.

Explanation:

Given:

Initial vertical height is, y_0=1500\ m

Initial horizontal velocity is, u_x=688\ m/s

Initial vertical velocity is, u_y=0(\textrm{Horizontal velocity only initially)}

Let the time taken by the bomb to reach the ground be 't'.

So, consider the equation of motion of the bomb in the vertical direction.

The displacement of the bomb vertically is S=y-y_0=0-1500=-1500\ m

Acceleration in the vertical direction is due to gravity, g=-9.8\ m/s^2

Therefore, the displacement of the bomb is given as:

S=u_yt+\frac{1}{2}gt^2\\-1500=0-\frac{1}{2}(9.8)(t^2)\\1500=4.9t^2\\t^2=\frac{1500}{4.9}\\t=\sqrt{\frac{1500}{4.9}}=17.5\ s

So, the bomb will remain in air for 17.5 s before hitting the ground.

You might be interested in
Keplers work revealed that the sun was
Elodia [21]
"orbiting the Sun in an elliptical orbit"
7 0
3 years ago
1. What happened to the force of friction when you increased the<br> weight on the cart?
Romashka-Z-Leto [24]
I think there would be an increase in force of friction
3 0
3 years ago
Can an object travel at the speed of light? Why or<br> why not?
Aleks [24]

Answer:

As an object approaches the speed of light, its mass rises precipitously. If an object tries to travel 186,000 miles per second, its mass becomes infinite, and so does the energy required to move it. For this reason, no normal object can travel as fast or faster than the speed of light.

Explanation:

6 0
3 years ago
A huge (essentially infinite) horizontal nonconducting sheet 10.0 cm thick has charge uniformly spread over both faces. The uppe
TiliK225 [7]

Answer:

E = 6.77 *10^{3} N/C

Explanation:

THE GIVEN sheet can be taken as two horizontal force  with surface charge density is

at one surface is ∈_1 = 95*10^ {-9} C/mm2

at oher surface is ∈_2= -25*10^{-9} C/mm2

the magnitude of electric field due to surface charge is given as\frac{∈}{2∈_O}

So, electric field at P (2 CM below from surface is) = E_1 +E_2

E = \frac{∈_1}{2∈_O} +\frac{∈_2}{2∈_O}

E = \frac{95*10^{-9} +25*10^{-9}}{2*8.85*10^{-12}}

E = 6.77 *10^{3} N/C

8 0
4 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • Which is more dense 10g of shampoo or 10kg of the same shampoo
    15·1 answer
  • The half-life of iodine-131 is 8 days. Chan Hee examines two samples of iodine-131. Sample 1: 10 g Sample 2: 20 g What can Chan
    10·1 answer
  • What causes scoliosis
    11·2 answers
  • Help me with this speed thingy I don't have no idea
    12·2 answers
  • What kind of reaction (endothermic or exothermic)
    14·1 answer
  • The half-life of plutonium 239 is 24,200 years. Assume that the decay rate is proportional to the amount. Determine the amount o
    7·1 answer
  • The principle that states ""a changing magnetic flux produces an electric potential difference"" is credited to
    12·1 answer
  • 1) When making a digital animation of a person running on a sidewalk in a scene, which parameter would be an initial condition?
    10·1 answer
  • Which of the following is NOT a geological event caused by the movement of tectonic plates?
    6·1 answer
  • A series of four different cylinders were each subjected to a force by placing four different masses on top of them. The mass pl
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!