Answer:
Differences between freefall and weightlessness are as follows:
<h3>
<u>Freefall</u></h3>
- When a body falls only under the influence of gravity, it is called free fall.
- Freefall is not possible in absence of gravity.
- A body falling in a vacuum is an example of free fall.
<h3>
<u>Weightlessness</u></h3>
- Weightlessness is a condition at which the apparent weight of body becomes zero.
- Weightlessness is possible in absence of gravity.
- A man in a free falling lift is an example of weightlessness.
Hope this helps....
Good luck on your assignment....
Answer:

Explanation:
Since the two charged bodies are symmetric, we can calculate the electric field taking both of them as point charges.
This can be easily seen if we use Gauss's law, 
We take a larger sphere of radius, say r, as the Gaussian surface. Then the electric field due to the charged sphere at a distance r from it's center is given by,

which is the same as that of a point charge.
In our problem the charges being of opposite signs, the electric field will add up. Therefore,

where,
= distance between the center of one sphere to the midpoint (between the 2 spheres)
<span>The reaction force would be the exact opposite of the action. In this case, choice (c) would be the most correct. If the action is the ball pushing the glove, the reaction would then be the glove pushing back on the ball.</span>
Answer:
Your little sister (mass 25.0 ) is sitting in her little red wagon (mass 8.50 at rest. You begin pulling her forward and continue accelerating her with a constant force for 2.35 at the end of which time she's moving at a speed of 1.80 .
(a) Calculate the impulse you imparted to the wagon and its passenger. (b) With what force did you pull on the wagon?
A non-moving bike has wheels that aren't spinning and zero angular momentum, which makes it very easy for external torque to change the wheels' direction, making the bike harder to balance. Even when staying relatively motionless, though, a rider can balance a bike with some effort.