1 1 1 2
2 -3 1 -11 -2R1 + R2 → R2
-1 2 -1 8 R1 + R3 → R3
1 1 1 2
0 -5 -1 -15 R2 ⇔ R3
0 3 0 10
1 1 1 2
0 3 0 10 -R3
0 -5 -1 -15
1 1 1 2
0 3 0 10 1/3 R2
0 5 1 15
1 1 1 2 -R2 + R1
0 1 0 10/3 -5R2 + R3
0 5 1 15
1 0 1 -4/3
0 1 0 10/3 -R3 + R1
0 0 1 -5/3
1 0 0 1/3
0 1 0 10/3
0 0 1 -5/3
Therefore, x = 1/3, y = 10/3, z = -5/3
Answer:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We are required to find a unit vector in the direction of:
![\left[\begin{array}{c}-8\\7\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-8%5C%5C7%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Unit Vector, 
The Modulus of
=
Therefore, the unit vector of the matrix is given as:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Answer:
i cant read it sorry
Step-by-step explanation:
50 degrees doesn’t belong because
35 + 115 + 30 = 180 degrees
Hope this helped :)
Answer:
Step-by-step explanation: