Answer:
The y-intercept is 0
Step-by-step explanation:
Answer:
4*x^4*y^22
Step-by-step explanation:
Your goal here is to REDUCE the given expression to simplest terms.
One way in which to approach this problem would be to rewrite (2x^2y^10)^3 as: (2x^2*y^8)*y^2*(2x^2*y^10)^2.
Dividing this rewritten expression by 2x^2*y^8 results in:
y^2(2x^2*y^10)^2.
We now need to raise (2x^2*y^10) to the power 2. Doing this, we get:
4x^4*y^20.
Multiply this by y^2 (see above):
y^2*4x^4*y^20
The first factor is 4: 4y^2*x^4*y^20. This is followed by the product of y^2 and y^20: 4*y^22*x^4
Finally, this should be re-written as
4*x^4*y^22
Another way of doing this problem would involve expanding the numerator fully and then cancelling out like factors:
8*x^6*y^30 4*x^4*y^22
----------------- = ------------------ = 4*x^4*y^22
2x^2y^8 1
Answer:
B. More than one quadrilateral exists with the given conditions, and all instances must be isosceles trapezoids.
Step-by-step explanation:
In a parallelogram, adjacent angles are supplementary. They are only congruent if the parallelogram is a rectangle. In this problem, adjacent angles are both congruent and acute. If this were a triangle, it would guarantee the triangle is isosceles.
The fact that opposite angles are supplementary guarantees that the fourth side of the figure is parallel to the base between the acute angles. That makes the figure an isosceles trapezoid. Unless specific angles and side lengths are specified, the description matches <em>any</em> isosceles trapezoid.
If Jos read 140 pages of a 300 page book he/she read 46.6% of the book
Answer:
The first box
Step-by-step explanation:
In a linear function you cannot have 2 of the same X numbers. Ex) You cannot have 2 -4's in the X row. In the Y, you may. But never the X.