1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
4 years ago
6

In a previous exercise we formulated a model for learning in the form of the differential equation dp dt = k(m − p) where p(t) m

easures the performance of someone learning a skill after a training time t, m is the maximum level of performance, and k is a positive constant. solve this differential equation to find an expression for p(t). (use p for p(t). assume that p(0) = 0.) incorrect: your answer is incorrect.
Mathematics
2 answers:
DaniilM [7]4 years ago
6 0
I assume you mean

   \dfrac{dP}{dt} = k(M-P)

ANSWER
An expression for P(t) is

   
P = M - Me^{-kt}

EXPLANATION
This is a separable differential equation. Treat M and k as constants. Then we can divide both sides by M - P to get the P term with the differential dP and multiply both sides by dt to separate dt from the P terms

   \begin{aligned} \dfrac{dP}{dt} &= k(M-P) \\ \dfrac{dP}{M-P} &= k\, dt
\end{aligned}

Integrate both sides of the equation.

   \begin{aligned}
\int \dfrac{dP}{M-P} &= \int k\, dt \\
-\ln|M-P| &= kt + C \\
\ln|M-P| &= -kt - C\end{aligned}

Note that for the left-hand side, u-substitution gives us 

   u = M - P \implies  du = -1dP \implies dP = -du

hence why \int \frac{dP}{M-P} \ne \ln|M - P|

Now we use the definition of the logarithm to convert into exponential form.

The definition is 

   \ln(a) = b \iff \log_e(a) = b \iff e^b = a

so applying it here, we get

   \begin{aligned} \ln|M-P| &= -kt - C \\ |M - P| &= e^{-kt - C} \\ 
M - P &= \pm e^{-kt - C} 
 \end{aligned}

Exponent properties can be used to address the constant C. We use x^{a} \cdot x^{b} = x^{a+b} here:

   \begin{aligned}
 M - P &= \pm e^{-kt - C} \\
M - P &= \pm e^{- C - kt} \\ 
M - P &= \pm e^{- C + (- kt)} \\ 
M - P &= \pm e^{- C} \cdot e^{- kt} \\ 
M - P &= Ke^{- kt} && (\text{\footnotesize Let $K = \pm e^{-kt}$ }) \\ 
M &= Ke^{- kt} + P\\
P &= M - Ke^{- kt}
\end{aligned}

If we assume that P(0) = 0, then set t = 0 and P = 0

   \begin{aligned} 
0 &= M - Ke^{- k\cdot 0} \\
0 &= M - K \cdot 1 \\
M &= K
 \end{aligned}


Substituting into our original equation, we get our final answer of

   P = M - Me^{-kt}
madreJ [45]4 years ago
5 0
Hi there!

\dfrac{dP}{dt} = k(M-P)

⇒ \dfrac{dP}{M-P} = k

\textbf{Integrate\: both \:sides\: of\: th'\: Eqn.} :-

\int \dfrac{dP}{M-P} = \int kdt

⇒ \ln|M-P| = kt + C

⇒ \ln|M-P| = -kt - C

Since,
u = M - P \implies du = -1dP \implies dP = -du

∴ \int \frac{dP}{M-P} \ne \ln|M - P|

\textbf{Applying\: definition \:of\: logarithm} :-

\ln|M-P| = -kt - C

⇒ |M - P| = e^{-kt - C}

⇒ M - P = \pm e^{-kt - C}

\textbf{Further solving} :-

⇒ M - P = \pm e^{-kt - C}

⇒ M - P = \pm e^{- C - kt}

⇒ M - P = \pm e^{- C + (- kt)}

⇒M - P = \pm e^{- C} × e^{- kt}

⇒ M - P = Ke^{- kt}

⇒ M = Ke^{- kt} + P

⇒ P = M - Ke^{- kt}

\textbf{Let \:P(0) \:= \:0, \:then \:set\: t\: =\: 0\: and\: P \:= \:0} :-

0 = M - Ke^{- k × 0}

⇒ 0 = M - K × 1

⇒ M = K

Substitute th' following value in Original Eq :-

\boxed{P = M - Me^{-kt}}


~ Hope it helps!
You might be interested in
F(x)=-x^2+3 find f(-2)
Black_prince [1.1K]

Answer:

f(-2) = -1

Step-by-step explanation:

f(x) = -x^2 + 3

f(-2) means when x is -2

Shown in the graph below, the point of solution is: (-2,-1), so when x is -2 y is -1

8 0
3 years ago
1. Use three units multipliers to convert 1520 meters to feet.
Musya8 [376]

Answer:

3

Step-by-step explanation:

420=2x2x3x5x7

recall that 2,3,5,7 are all prime numbers

5 0
4 years ago
1. Determine the following set of adjustments to the equation then draw the graph !!
suter [353]

Answer:

y = -1 and u = 3.333

Step-by-step explanation:

The given equations are :

3u + y = 9 ...(1)

3u-5y = 15 ...(2)

Subtract equation (2) from (1).

3u + y-( 3u-5y)= 9 -15

y+5y = -6

6y = -6

y = -1

Put the value of y in equation (1).

3u + (-1) = 9

3u-1 = 9

3u = 10

u = 10/3

u = 3.333

The attached figure shows the graph for the above equations.

4 0
3 years ago
Can someone teach me how to solve this please
Alexeev081 [22]
Multiply it all together
7 0
3 years ago
For f(x) = 4x+1 and g(x) = x2 - 5, find (f - g)(x).
Lostsunrise [7]

Answer:

C

Step-by-step explanation:

Simply substitute the equations f(x) and g(x) for f and g.

(4x+1)-(x^{2}-5)

4x+1-x^{2}+5

Do some rearranging and:

-x^{2}+4x+6

Hope this helped!

3 0
3 years ago
Other questions:
  • Find the volume.<br><br> Please help thank you!
    5·1 answer
  • Just need help on graph. Plz explain if you can. I have a few more questions like this.
    7·2 answers
  • a bag contains 5 red 3 green 4 blue and 8 yellow marbles find the probability of randomly selecting a green marble and then a ye
    11·1 answer
  • Need help on 16 please!!!!!!!
    15·2 answers
  • A store bought jeans at a cost of $40 a pair. Select all the statements that are true.​
    14·1 answer
  • This is algebra, if you can help that is appreciated.
    15·2 answers
  • I’m totally confused can someone please help me!!!
    7·2 answers
  • Please help asap no trolls!!
    7·1 answer
  • Answer fast please will give brainliest<br> 4 × 10-5 cm=?
    8·2 answers
  • If 2x = 3y + 11 and 2^x = 2^4(y+1), determine the value of x+y
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!