1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
9

PLEASE HELP ASAP In this task, you will practice finding the area under a nonlinear function by using rectangles. You will use g

raphing skills in addition to the knowledge gathered in this unit. Sketch the graph of the function y = 20x − x2, and approximate the area under the curve in the interval [0, 20] by dividing the area into the given numbers of rectangles. Part A Use five rectangles to approximate the area under the curve. Part B Use 10 rectangles to approximate the area under the curve. Part C Calculate the area under the curve using rectangles as their number becomes arbitrarily large (tends to infinity). You do not need to sketch the rectangles.
Mathematics
1 answer:
mrs_skeptik [129]3 years ago
4 0

Answer:

a) 1280 u^{2}

b) 1320 u^{2}

c) \frac{4000}{3} u^{2}

Step-by-step explanation:

In order to solve this problem we must start by sketching the graph of the function. This will help us visualize the problem better. (See attached picture)

You can sketch the graph of the function by plotting as many points as you can from x=0 to x=20 or by finding the vertex form of the quadratic equation by completing the square. You can also do so by using a graphing device, you decide which method suits better for you.

A)

So we are interested in finding the area under the curve, so we divide it into 5 rectangles taking a right hand approximation. This is, the right upper corner of each rectangle will touch the graph. (see attached picture).

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=5 so we get:

\Delta x=\frac{20-0}{5}=\frac{20}{5}=4

so each rectangle must have a width of 4 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=64

h2=96

h3=96

h4= 64

h5=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(4)(64+96+96+64+0)

so:

A= 1280 u^{2}

B) The same procedure is used to solve part B, just that this time we divide the area in 10 rectangles.

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=10 so we get:

\Delta x=\frac{20-0}{10}=\frac{20}{10}=2

so each rectangle must have a width of 2 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=36

h2=64

h3=84

h4= 96

h5=100

h6=96

h7=84

h8=64

h9=36

h10=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(2)(36+64+84+96+100+96+84+64+36+0)

so:

A= 1320 u^{2}

c)

In order to find part c, we calculate the area by using limits, the limit will look like this:

\lim_{n \to \infty} \sum^{n}_{i=1} f(x^{*}_{i}) \Delta x

so we start by finding the change of x so we get:

\Delta x =\frac{b-a}{n}

\Delta x =\frac{20-0}{n}

\Delta x =\frac{20}{n}

next we find x^{*}_{i}

x^{*}_{i}=a+\Delta x i

so:

x^{*}_{i}=0+\frac{20}{n} i=\frac{20}{n} i

and we find f(x^{*}_{i})

f(x^{*}_{i})=f(\frac{20}{n} i)=-(\frac{20}{n} i)^{2}+20(\frac{20}{n} i)

cand we do some algebra to simplify it.

f(x^{*}_{i})=-\frac{400}{n^{2}}i^{2}+\frac{400}{n}i

we do some factorization:

f(x^{*}_{i})=-\frac{400}{n}(\frac{i^{2}}{n}-i)

and plug it into our formula:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{400}{n}(\frac{i^{2}}{n}-i) (\frac{20}{n})

And simplify:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{8000}{n^{2}}(\frac{i^{2}}{n}-i)

\lim_{n \to \infty} -\frac{8000}{n^{2}} \sum^{n}_{i=1}(\frac{i^{2}}{n}-i)

And now we use summation formulas:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{n(n+1)(2n+1)}{6n}-\frac{n(n+1)}{2})

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{2n^{2}+3n+1}{6}-\frac{n^{2}}{2}-\frac{n}{2})

and simplify:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (-\frac{n^{2}}{6}+\frac{1}{6})

\lim_{n \to \infty} \frac{4000}{3}+\frac{4000}{3n^{2}}

and solve the limit

\frac{4000}{3}u^{2}

You might be interested in
The ratio of Mary’s downloaded iPad apps to Katie’s is 12 to 8. If Katie has 96 apps how many does Mary have?
sladkih [1.3K]
8×12=96. Katie
12×12=144. Mary
you have to Divide Katie's 96 by 8 to get 12
then take Mary's 12 and multiply it by 12 to get the answer of 144 apps that Mary owns

3 0
3 years ago
Latoya bought an item for $66. Before that, she had $402.44. How much money does Latoya have now.
andre [41]

Answer:

$336.44

Step-by-step explanation:

$402.44 - $66 = $336.44

8 0
2 years ago
Find the selling price
tangare [24]

the selling price would be 60.75

6 0
3 years ago
What is the value of x given that figure LMNO is a square
NARA [144]
I got Y=12 for my answer.
6 0
3 years ago
Write and solve a proportion to answer the question. 36 is 0.9% of what number w? =0.9100
pickupchik [31]

Answer:

Step-by-step explanation:

The question can be written out like this:

36 = 0.009x

Multiply both sides by 1,000:

9x = 36,000

Divide both sides by 9:

x = 4,000

8 0
4 years ago
Other questions:
  • The square root of 60 is between A) 5 and 6. B) 6 and 7. C) 7 and 8. D) 8 and 9.
    15·1 answer
  • Help hurry!!!!!!!!!!!​
    13·2 answers
  • The 5th of 9 consecutive whole numbers whose sum is 153 is?
    13·2 answers
  • The answer please !!
    13·1 answer
  • Round the price to the nearest dollar.<br> crackers $1.28
    14·2 answers
  • . Larry solved this equation. 3(2-3)= x Which representation could Larry have used to solve this equation?
    8·1 answer
  • Kelly is paid $20 to babysit for 8 hours. How much is she paid per hour?
    14·2 answers
  • Find the midpoint of CD with endpoints C (6,-9) and D (0,15)​
    8·1 answer
  • -3 = x/4 + 5 using replacement set {-32, 8,32}
    5·1 answer
  • 6. Holly's recipe for birdseed is 80% sunflower chips. Her recipe creates 25 ounces of bird
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!