1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
9

PLEASE HELP ASAP In this task, you will practice finding the area under a nonlinear function by using rectangles. You will use g

raphing skills in addition to the knowledge gathered in this unit. Sketch the graph of the function y = 20x − x2, and approximate the area under the curve in the interval [0, 20] by dividing the area into the given numbers of rectangles. Part A Use five rectangles to approximate the area under the curve. Part B Use 10 rectangles to approximate the area under the curve. Part C Calculate the area under the curve using rectangles as their number becomes arbitrarily large (tends to infinity). You do not need to sketch the rectangles.
Mathematics
1 answer:
mrs_skeptik [129]3 years ago
4 0

Answer:

a) 1280 u^{2}

b) 1320 u^{2}

c) \frac{4000}{3} u^{2}

Step-by-step explanation:

In order to solve this problem we must start by sketching the graph of the function. This will help us visualize the problem better. (See attached picture)

You can sketch the graph of the function by plotting as many points as you can from x=0 to x=20 or by finding the vertex form of the quadratic equation by completing the square. You can also do so by using a graphing device, you decide which method suits better for you.

A)

So we are interested in finding the area under the curve, so we divide it into 5 rectangles taking a right hand approximation. This is, the right upper corner of each rectangle will touch the graph. (see attached picture).

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=5 so we get:

\Delta x=\frac{20-0}{5}=\frac{20}{5}=4

so each rectangle must have a width of 4 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=64

h2=96

h3=96

h4= 64

h5=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(4)(64+96+96+64+0)

so:

A= 1280 u^{2}

B) The same procedure is used to solve part B, just that this time we divide the area in 10 rectangles.

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=10 so we get:

\Delta x=\frac{20-0}{10}=\frac{20}{10}=2

so each rectangle must have a width of 2 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=36

h2=64

h3=84

h4= 96

h5=100

h6=96

h7=84

h8=64

h9=36

h10=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(2)(36+64+84+96+100+96+84+64+36+0)

so:

A= 1320 u^{2}

c)

In order to find part c, we calculate the area by using limits, the limit will look like this:

\lim_{n \to \infty} \sum^{n}_{i=1} f(x^{*}_{i}) \Delta x

so we start by finding the change of x so we get:

\Delta x =\frac{b-a}{n}

\Delta x =\frac{20-0}{n}

\Delta x =\frac{20}{n}

next we find x^{*}_{i}

x^{*}_{i}=a+\Delta x i

so:

x^{*}_{i}=0+\frac{20}{n} i=\frac{20}{n} i

and we find f(x^{*}_{i})

f(x^{*}_{i})=f(\frac{20}{n} i)=-(\frac{20}{n} i)^{2}+20(\frac{20}{n} i)

cand we do some algebra to simplify it.

f(x^{*}_{i})=-\frac{400}{n^{2}}i^{2}+\frac{400}{n}i

we do some factorization:

f(x^{*}_{i})=-\frac{400}{n}(\frac{i^{2}}{n}-i)

and plug it into our formula:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{400}{n}(\frac{i^{2}}{n}-i) (\frac{20}{n})

And simplify:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{8000}{n^{2}}(\frac{i^{2}}{n}-i)

\lim_{n \to \infty} -\frac{8000}{n^{2}} \sum^{n}_{i=1}(\frac{i^{2}}{n}-i)

And now we use summation formulas:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{n(n+1)(2n+1)}{6n}-\frac{n(n+1)}{2})

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{2n^{2}+3n+1}{6}-\frac{n^{2}}{2}-\frac{n}{2})

and simplify:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (-\frac{n^{2}}{6}+\frac{1}{6})

\lim_{n \to \infty} \frac{4000}{3}+\frac{4000}{3n^{2}}

and solve the limit

\frac{4000}{3}u^{2}

You might be interested in
(2 marks) Ten persons will stand in a line. 3 males and 7 females. In how many ways they may be arranged according to gender?​
Blababa [14]

Answer:

In 1 ways they may be arranged the line

4 0
3 years ago
Please help will give brainliest i need this its due wednesday and there are like 45-50 questions
creativ13 [48]

Answer:

i think its a

Step-by-step explanation:

sorry if im wrong just stressd out. good luck.

8 0
3 years ago
Read 2 more answers
8 ten thousands 4 hundreds rename
jeka94
The answer is 80,400
5 0
3 years ago
Today was my first day :p<br> Brainliest goes to whoever inserts the funniest picture :&gt;
Artyom0805 [142]
this gotta be funny

5 0
2 years ago
suppose you are mixing red and blue paint in a bucket. do you think the final color of the mixed paint will be the same whether
wlad13 [49]

Answer:

It does not matter which color you add first because either way you will end up with the same color, purple. We can relate this to the commutative property of addition because blue + red = red + blue.

Pls mark it Brainliest!!!

5 0
2 years ago
Other questions:
  • The Leukemia and Lymphoma Society sponsors a 5k race to raise money. It receives $55 per race entry and $10,000 in donations, bu
    14·1 answer
  • WILL MARK YOU BRAINLIEST PLSS HELP
    5·1 answer
  • Simplify 7(x + 3). xxxxxxxxxxx
    11·2 answers
  • SHOW ALL WORK STEP BY STEP !!
    13·1 answer
  • 3 3/10 - 7/10 please help
    13·2 answers
  • The temperature in New Jersey is 85 degrees and climbing to 2 degrees per hour the temperature in Florida is a hundred and falli
    15·1 answer
  • PLEASD HELP!!! I have no clue how to do this
    5·1 answer
  • The value of y is directly proportional to x.
    6·1 answer
  • !!!20 POINTS AND BRAINLIEST!!!PLEASE HELP!!!
    8·2 answers
  • A diagonal of a cube measures StartRoot 294 EndRoot cm. The diagonal of a face measures 14 cm. What is the length of an edge of
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!