1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zzz [600]
3 years ago
9

PLEASE HELP ASAP In this task, you will practice finding the area under a nonlinear function by using rectangles. You will use g

raphing skills in addition to the knowledge gathered in this unit. Sketch the graph of the function y = 20x − x2, and approximate the area under the curve in the interval [0, 20] by dividing the area into the given numbers of rectangles. Part A Use five rectangles to approximate the area under the curve. Part B Use 10 rectangles to approximate the area under the curve. Part C Calculate the area under the curve using rectangles as their number becomes arbitrarily large (tends to infinity). You do not need to sketch the rectangles.
Mathematics
1 answer:
mrs_skeptik [129]3 years ago
4 0

Answer:

a) 1280 u^{2}

b) 1320 u^{2}

c) \frac{4000}{3} u^{2}

Step-by-step explanation:

In order to solve this problem we must start by sketching the graph of the function. This will help us visualize the problem better. (See attached picture)

You can sketch the graph of the function by plotting as many points as you can from x=0 to x=20 or by finding the vertex form of the quadratic equation by completing the square. You can also do so by using a graphing device, you decide which method suits better for you.

A)

So we are interested in finding the area under the curve, so we divide it into 5 rectangles taking a right hand approximation. This is, the right upper corner of each rectangle will touch the graph. (see attached picture).

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=5 so we get:

\Delta x=\frac{20-0}{5}=\frac{20}{5}=4

so each rectangle must have a width of 4 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=64

h2=96

h3=96

h4= 64

h5=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(4)(64+96+96+64+0)

so:

A= 1280 u^{2}

B) The same procedure is used to solve part B, just that this time we divide the area in 10 rectangles.

In order to figure the width of each rectangle we can use the following formula:

\Delta x=\frac{b-a}{n}

in this case a=0, b=20 and n=10 so we get:

\Delta x=\frac{20-0}{10}=\frac{20}{10}=2

so each rectangle must have a width of 2 units.

We can now calculate the hight of each rectangle. So we figure the y-value of each corner of the rectangles. We get the following heights:

h1=36

h2=64

h3=84

h4= 96

h5=100

h6=96

h7=84

h8=64

h9=36

h10=0

so now we can use the following formula to find the area under the graph. Basically what the formula does is add the areas of the rectangles:

A=\sum^{n}_{i=1} f(x_{i}) \Delta x

which can be rewritten as:

A=\Delta x \sum^{n}_{i=1} f(x_{i})

So we go ahead and solve it:

A=(2)(36+64+84+96+100+96+84+64+36+0)

so:

A= 1320 u^{2}

c)

In order to find part c, we calculate the area by using limits, the limit will look like this:

\lim_{n \to \infty} \sum^{n}_{i=1} f(x^{*}_{i}) \Delta x

so we start by finding the change of x so we get:

\Delta x =\frac{b-a}{n}

\Delta x =\frac{20-0}{n}

\Delta x =\frac{20}{n}

next we find x^{*}_{i}

x^{*}_{i}=a+\Delta x i

so:

x^{*}_{i}=0+\frac{20}{n} i=\frac{20}{n} i

and we find f(x^{*}_{i})

f(x^{*}_{i})=f(\frac{20}{n} i)=-(\frac{20}{n} i)^{2}+20(\frac{20}{n} i)

cand we do some algebra to simplify it.

f(x^{*}_{i})=-\frac{400}{n^{2}}i^{2}+\frac{400}{n}i

we do some factorization:

f(x^{*}_{i})=-\frac{400}{n}(\frac{i^{2}}{n}-i)

and plug it into our formula:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{400}{n}(\frac{i^{2}}{n}-i) (\frac{20}{n})

And simplify:

\lim_{n \to \infty} \sum^{n}_{i=1}-\frac{8000}{n^{2}}(\frac{i^{2}}{n}-i)

\lim_{n \to \infty} -\frac{8000}{n^{2}} \sum^{n}_{i=1}(\frac{i^{2}}{n}-i)

And now we use summation formulas:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{n(n+1)(2n+1)}{6n}-\frac{n(n+1)}{2})

\lim_{n \to \infty} -\frac{8000}{n^{2}} (\frac{2n^{2}+3n+1}{6}-\frac{n^{2}}{2}-\frac{n}{2})

and simplify:

\lim_{n \to \infty} -\frac{8000}{n^{2}} (-\frac{n^{2}}{6}+\frac{1}{6})

\lim_{n \to \infty} \frac{4000}{3}+\frac{4000}{3n^{2}}

and solve the limit

\frac{4000}{3}u^{2}

You might be interested in
Find the measure of each marked angle no
daser333 [38]
They equal to 180 because they are supplementary angles

7 0
3 years ago
Read 2 more answers
I need a little help here please
erma4kov [3.2K]

Answer:

Plot points at (0,1) and (-3,3) and draw a line going through both points.

Step-by-step explanation:

Let's start by graphing the y intercept.

y=mx+b

m is the slope. b is the y intercept. Since the equation is y=-2/3x+1, we can conclude the y intercept is 1. We graph a point at (0,1).

If you didn't know the y intercept is where the line intercepts the y-axis.

Now, from the point (0,1) we go up 2 and to the left 3 as it is a negative slope. We reach (-3,3). Plot a point there. Then draw a line going through both points. There's your line!

3 0
2 years ago
Any pointers on how to solve (-124) + 25 + (-87)
Elena-2011 [213]

|-124| + 25 + |-87|

124+25+87

236

8 0
3 years ago
If you were to solve this inequality,<br> do you need to flip the Inequality symbol?
Pavlova-9 [17]

Answer: no

I would not flip the inequality symbol

8 0
3 years ago
Read 2 more answers
Using the table below showing median income by year, how many years did it take for the annual household income to double from i
frozen [14]

Answer:

2006

Step-by-step explanation:

Trust

8 0
3 years ago
Other questions:
  • 42.85714 as a percent
    13·2 answers
  • 12.56 x 100 please answer!!!!!!!!!!!
    7·2 answers
  • a cookie recipe calls for 3 and 1/4 cup of flour the recipe makes three dozen cookies how much flour is needed to make 144 cooki
    5·2 answers
  • A rectangular room 14 feet by 12 feet has a semicircular sitting area attached with a diameter of 12 feet. What is the total are
    13·1 answer
  • In the graph, what does A represent?<br>A. Foci<br>B. Minor Axis<br>C. Major Axis<br>D. Vertices
    12·1 answer
  • What is the length of BC in the right triangle below?
    10·2 answers
  • 3 ( 1 - 3x =2 (-4× + 7)​
    11·1 answer
  • Can you please answer for me please need questions answer
    8·2 answers
  • 21x+3y=18 in point slope from
    11·1 answer
  • The candy shop puts 10 ounces of gummy bears in each box. How many boxes do they need to fill if there are 2,114 pounds of gummy
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!