The least possible value of (x+1)(x+2)(x+3)(x+4)+2019 where x is a real number is 2018
<h3>What is an Expression ?</h3>
An expression is a mathematical statement consisting of variables , constant and mathematical operators.
The expression given is
(x+1)(x+2)(x+3)(x+4)+2019
To find the minimum value
(x+1)(x+2) = ( x² +3x +2) = ( x +5/2)² - 9/4
(x+3)(x+4) = (x² +7x +12) = ( x +5/2)² -1/4
(x+1)(x+2)(x+3)(x+4) = ( x +5/2)⁴ - 5/2 ( x +5/2)² +9/16
Considering ( x +5/2)² = y
(x+1)(x+2)(x+3)(x+4) = y² - 5/2y + 9/16
(x+1)(x+2)(x+3)(x+4) = ( y - 5/4)² - 1
(x+1)(x+2)(x+3)(x+4) = ( ( x +5/2)² -5/4)² - 1
The minimum value when x is a real number is -1
( x +5/2)² -5/4) = 0
-1 +2019 = 2018
x has two possible real solution
and the least possible value of (x+1)(x+2)(x+3)(x+4)+2019 where x is a real number is 2018.
To know more about Expression
brainly.com/question/14083225
#SPJ1