This is a combination in which you choose 4 from 10.
The formula is
combinations = 10! / 4! * (10-4)!
combinations = 10! / 4! * 6!
combinations = 10 * 9 * 8 * 7 * 6! / 4! * 6!
combinations = 10 * 9 * 8 * 7 / 4 * 3 * 2
combinations = 10 * 3 * 7
combinations = 210
Source:
http://www.1728.org/combinat.htm
The second dot with says x+y=360 y=8x
Find the critical value or test statistic.

Find P(z > 2.25) using a normal distribution table
P(z > 2.25) = 0.0122
498 is approximately 500
12 is approximately 10
500/10 = 50
So, 498/12 is approximately 50.
Multiply
2
2
by
5
5
.
x
5
+
10
x
4
+
10
x
3
⋅
2
2
+
10
x
2
⋅
2
3
+
5
x
⋅
2
4
+
2
5
x
5
+
10
x
4
+
10
x
3
⋅
2
2
+
10
x
2
⋅
2
3
+
5
x
⋅
2
4
+
2
5
Raise
2
2
to the power of
2
2
.
x
5
+
10
x
4
+
10
x
3
⋅
4
+
10
x
2
⋅
2
3
+
5
x
⋅
2
4
+
2
5
x
5
+
10
x
4
+
10
x
3
⋅
4
+
10
x
2
⋅
2
3
+
5
x
⋅
2
4
+
2
5
Multiply
4
4
by
10
10
.
x
5
+
10
x
4
+
40
x
3
+
10
x
2
⋅
2
3
+
5
x
⋅
2
4
+
2
5
x
5
+
10
x
4
+
40
x
3
+
10
x
2
⋅
2
3
+
5
x
⋅
2
4
+
2
5
Raise
2
2
to the power of
3
3
.
x
5
+
10
x
4
+
40
x
3
+
10
x
2
⋅
8
+
5
x
⋅
2
4
+
2
5
x
5
+
10
x
4
+
40
x
3
+
10
x
2
⋅
8
+
5
x
⋅
2
4
+
2
5
Multiply
8
8
by
10
10
.
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
5
x
⋅
2
4
+
2
5
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
5
x
⋅
2
4
+
2
5
Raise
2
2
to the power of
4
4
.
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
5
x
⋅
16
+
2
5
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
5
x
⋅
16
+
2
5
Multiply
16
16
by
5
5
.
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
80
x
+
2
5
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
80
x
+
2
5
Raise
2
2
to the power of
5
5
.
x
5
+
10
x
4
+
40
x
3
+
80
x
2
+
80
x
+
32