Answer:
<em><u>x=9, y=12</u></em>
Step-by-step explanation:
-5x+4y=3
--------A
x=2y-15----------B
Putting the value of x from B in A
-5(2y-15) +4y=3
-10y+75+4y=3
-6y=3-72
-6y=-72
y=72/6= 12
Putting the value of y =12 in B
x= 2(12)-15
x= 24-15
x=9
Step-by-step explanation:
If the scale factor of two similar solids is a: b:. then
(1) the ratio of corresponding perimeters is a:b
(2) the ratio of the base areas, of the lateral areas, and of the total areas is 
(3) the ratio of the volumes is 
The given conclusion that ABCD is a square is not valid.
Given that, AC⊥BD and AC≅BD.
We need to determine if the given conclusion is valid.
<h3>What are the properties of squares?</h3>
A square is a closed figure with four equal sides and the interior angles of a square are equal to 90°. A square can have a wide range of properties. Some of the important properties of a square are given below.
- A square is a quadrilateral with 4 sides and 4 vertices.
- All four sides of the square are equal to each other.
- The opposite sides of a square are parallel to each other.
- The interior angle of a square at each vertex is 90°.
- The diagonals of a square bisect each other at 90°.
- The length of the diagonals is equal.
Given that, the diagonals of a quadrilateral are perpendicular to each other and the diagonals of a quadrilateral are equal.
Now, from the properties of a square, we understood that the diagonals of a square are perpendicular to each other and the diagonals of a square are equal.
So, the given quadrilateral can be a square. But only with these two properties can not conclude the quadrilateral is a square.
Therefore, the given conclusion that ABCD is a square is not valid.
To learn more about the properties of a square visit:
brainly.com/question/20377250.
#SPJ1
What kind of question is this? and where is the data