The expressions with radicals which are variables and numbers raised to a fractional indices are simplified as follows.
13. √(9·x) = 3·√x
14. √(4·y) = 2·√y
15. √(8·x²) = 2·x·√2
16. √(9·x²) = 3·x
17. √(3·x²) = x·√3
18. √(5·y²) = y·√5
19. √(13·x²) = x·√(13)
20. √(29·y²) = y·√(29)
21. √(64·y²) = 8·y
22. √(125·a²) = 5·a·√5
23. ∛(16) = 2·∛2
24. √(50·a²·b) = 5·a·√(2·b)
<h3>What are radicals expressions?</h3>
A radical expression is one that contains the radical (square root or nth root) sign, √.
13. √(9·x)
√(9·x) = √(3²·x) = 3·√x
14. √(4·y)
√(4·y) = √(2²·y) = 2·√y
15. √(8·x²)
√(8·x²) = √(4 × 2·x²) = √(2² × 2·x²)
√(2² × 2·x²) = √(2²·x² × 2) = 2·x·√2
16. √(9·x²)
√(9·x²) = √(3²·x²) = 3·x
17. √(3·x²)
18. √(5·y²)
√5 × √(y²) = √5 × y = y·√5
19. √(13·x²)
√(13·x²) = √(13) × √x² = √(13) × x = x·√(13)
20. √(29·y²)
√(29·y²) = √(29) × √(y²) = √(29) × y = y·√(29)
21. √(64·y²)
√(64·y²) = √(8²·y²) = √(8²) × √(y²) = 8 × y = 8·y
22. √(125·a²)
√(125·a²) = √(25 × 5 × a²) = √(25) × √5 × √(a²) = 5 × √5 × a
5 × √5 × a = 5·a·√5
23. ∛(16)
∛(16) = ∛(16) = ∛(8 × 2) = ∛(2³ × 2) = 2·∛2
24. √(50·a²·b)
√(50·a²·b) = √(25 × 2 × a² × b) = √(5² × 2 × a² × b) = √(5² × a² × 2 × b)
√((5² × a²) × 2 × b) = 5·a·√(2·b)
Learn more about simplifying expressions with radicals here:
brainly.com/question/13114751
#SPJ1
Answer:
All angle = (110°, 35°, 35°)
Step-by-step explanation:
Given:
Triangle is a Obtuse isosceles triangle
One angle = 35°
Find:
All angle
Computation:
In the Obtuse isosceles triangle, one angle is obtuse and the other two angles are acute so, two equal angles are 35°
So,
Sum of angle property
x + 35° + 35° = 180°
x = 110°
Obtuse angle = 110°
All angle = (110°, 35°, 35°)
Answer:
9
Step-by-step explanation:
Divide 135 by 15.
So for this you will be using an exponential equation, which is
with a=initial value, b=growth/decay, y = total balance, and x = # of years
In this case, a = 500, and since with this problem the initial value is growing, you will add 100% to 6% to get 106%, or 1.06. The equation will be formed as such: 
With this problem, just plug in 15 into x and solve for y: 
In short, after 15 years Tom will have $1198.28 in his account.
Answer:
if my calculator is not wrong Is 21