This is either a trick question or a very hard one. In the first case: An electric field cannot occur inside a conductor (or by using the superposition principle you find out that at this point your electric fields cancel each other out)... Or you must use the laplace equation and proper boundary conditions to solve for the electrostatic potential
<span>Edit: Considering the center of mass of the plate is on the plate</span>
Answer:
This depends on the writers
if they want they can make spiderman deny the laws of nature
<h2>
Answer:20.97g N,32.63g N</h2>
Explanation:
We consider the forces at the knot.
The vertical forces are
is the vertical component of tension
at the knot.
is the weight of the mass
acting downwards.
The horizontal forces are
is the tension in the rope acting left.
is the horizontal component of tension
acting towards right.
Since the knot has no mass,it is always in equilibrium.
So,the sum of forces acting on it will be zero.
Balancing vertical forces gives,


=
Balancing horizontal forces gives,



Answer:
the difference of electrical potential between two points.