Answer:
5.1*10^3 J/m^3
Explanation:
Using E = q/A*eo
And
q =75*10^-6 C
A = 0.25
eo = 8.85*10^-12
Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]
= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]
= 5.1*10^3 J/m^3
Answer:
Part a)

Part b)

Part c)


Explanation:
Part a)
As we know that frequency = 1 MHz
speed of electromagnetic wave is same as speed of light
So the wavelength is given as



Part b)
As we know the relation between electric field and magnetic field



Part c)
Intensity of wave is given as



Pressure is defined as ratio of intensity and speed


Answer:
The wire now has less (the half resistance) than before.
Explanation:
The resistance in a wire is calculated as:

Were:
R is resistance
is the resistance coefficient
l is the length of the material
s is the area of the transversal wire, in the case of wire will be circular area (
).
So if the lenght and radius are doubled, the equation goes as follows:

So finally because the circular area is a square function, the resulting equation is half of the one before.
Answer:
The time taken for the ball to get to the batter is 0.41 s.
Explanation:
Given;
initial velocity of the baseball, u = 45 m/s
horizontal distance between the pitcher and the batter, X = 18.39 m
The horizontal distance or range of a projectile is given as;
X = ut
where;
t is the time of flight
u is the initial velocity
t = X / u
t = 18.39 / 45
t = 0.41 s
Therefore, the time taken for the ball to get to the batter is 0.41 s.
Answer:
The effects that certain frequencies of EMR have when absorbed by matter is explained below in complete detail.
Explanation:
Electromagnetic radiation of distinct frequencies associates with material adversely. ... Gamma rays, though commonly of somewhat greater frequency than X rays have the equivalent creation. When the power of gamma rays is consumed in material, its influence is practically indistinguishable from the outcome generated by X rays.