Answer:- The hydroxide ion concentration of the solution is
.
Solution:- The formula used to calculate pOH from hydroxide ion is:
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
When pOH is given and we are asked to calculate hydroxide ion concentration then we multiply both sides by negative sign and take antilog and what we get on doing this is:
![[OH^-]=10^-^p^O^H](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5Ep%5EO%5EH)
pOH is given as 5.71 and we are asked to calculate hydrogen ion concentration. Let's plug in the given value in the formula:
![[OH^-]=10^-^5^.^7^1](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5E5%5E.%5E7%5E1)
= 0.00000195 or 
So, the hydroxide ion concentration of the solution is
.
Answer:
Explanation:
A 12.48 g sample of an unknown metal, heated to 99.0 °C was then plunged into 50.0 mL of 25.0 °C water. The temperature of the water rose to 28.1 Go to calculating final temperature when mixing two samples of water ... Problem #1: A 610. g piece of copper tubing is heated to 95.3 °C and placed in an ... The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. ... Problem #4: A 5.00 g sample of aluminum (specific heat capacity = 0.89 J g¯1
I think this the the list of choices relating to the above question.
reaction rate
<span>activation energy </span>
<span>collision theory </span>
<span>spontaneous reaction
</span>
The term that best relate to ben's observation is REACTION RATE.
Reaction rate is defined as the speed at which the chemical reaction proceeds. It either is the amount of concentration of a product in a given unit of time or the concentration of the reactant that is being consumed in a unit of time.