Answer:
The highlighted words in the explanation.
Explanation:
A clue comes by considering the noble gas elements, the rightmost column of the periodic table. These elements—helium, neon, argon, krypton, xenon, and radon—do not form compounds very easily, which suggests that they are especially stable as lone atoms. What else do the noble gas elements have in common?
Answer:
D. Each photon has a specific amount of energy
Explanation:
Answer:
4.81×10¹⁰ atoms.
Explanation:
We'll begin by converting 3.2 pg to Ca to grams (g). This can be obtained as follow:
1 pg = 1×10¯¹² g
Therefore,
3.2 pg = 3.2 pg × 1×10¯¹² g / 1 pg
3.2 pg = 3.2×10¯¹² g
Therefore, 3.2 pg is equivalent to 3.2×10¯¹² g
Next, we shall determine the number of mole in 3.2×10¯¹² g of Ca. This can be obtained as follow:
Mass of Ca = 3.2×10¯¹² g
Molar mass of Ca = 40.08 g/mol
Mole of ca=.?
Mole = mass /molar mass
Mole of Ca = 3.2×10¯¹² / 40.08
Mole of Ca = 7.98×10¯¹⁴ mole.
Finally, we shall determine the number of atoms present in 7.98×10¯¹⁴ mole of Ca. This can be obtained as illustrated below:
From Avogadro's hypothesis,
1 mole of Ca contains 6.02×10²³ atoms.
Therefore, 7.98×10¯¹⁴ mole of Ca will contain = 7.98×10¯¹⁴ × 6.02×10²³ = 4.81×10¹⁰ atoms.
Therefore, 3.2 pg of Ca contains 4.81×10¹⁰ atoms.
Incomplete combustion is formed like: hydrocarbon + oxygen-> carbon + carbon monoxide + water!
Answer:

Explanation:
Hello,
Based on the given reaction, since magnesium and water are in a 1:2 molar ratio at the reactants, we must apply the following stoichiometric factors to compute the complete reaction of the 6.0 g of magnesium:

Best regards.