Answer:
Step-by-step explanation:
Given equation is,
a). y = 
x 0.5 1 2 3 4 5 6
y

b). By plotting the input-output values on the graph we get the curve as shown in option C.
Therefore, Option C will be the answer.
I believe a qualitative prediction requires a prediction with out any numerical data to support it while a quantitative predictions require a prediction supported by numerical data.
A real world example of this is in chemistry during a lab. qualitative data is based off of observation with out numerical data such as a color change. quantitative data is based off of observation with numerical data such as the mass changes.
(quantitative prediction is decision from data based on percentages, probabilities, and so on while qualitative predictions are based off of given information).
I hope this helps and let me know if you need further explaining.
<u>We are given:</u>
The function: y = -16t² + 64
where y is the height from ground, t seconds after falling
<u>Part A:</u>
when the droplet would hit the ground, it's height from the ground will be 0
replacing that in the given function:
0 = -16t² + 64
16t² = 64 [adding 16t² on both sides]
t² = 4 [dividing both sides by 16]
t = 2 seconds [taking square root of both sides]
<u>Part B:</u>
for second droplet,
height from ground = 16 feet
time taken = t seconds
acceleration due to gravity = 10 m/s²
initial velocity = 0 m/s
h = ut + (1/2)at² [second equation of motion]
16 = (0)(t) + (1/2)(10)(t²)
16 = 5t²
t² = 16/5
t = 1.8 seconds (approx)
Therefore, the second droplet takes the least amount time to hit the ground
Answer:
24
Step-by-step explanation:
Answer:
Step-by-step explanation: