Keywords:
<em>Quadratic equation, vertex shape, parabola
</em>
For this case we have to rewrite the given quadratic equation, in the form of vertex, for this, we must take into account that a quadratic equation of the form
, can be rewritten in the form of vertex as:
Vertice is the lowest or highest point of the parabola. The vertex is given by:
. So, let:
, to find the equation in the form of vertex, we follow the steps below:
Step 1:
We take the common factor to the first two terms of the equation:
![f (x) = 4 (x^2 + 12x) + 10](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%204%20%28x%5E2%20%2B%2012x%29%20%2B%2010)
Step 2:
We work square:
We divide the coefficient of the term
by 2 and its result is squared, that is:
![(\frac {12} {2}) ^ 2 = 36](https://tex.z-dn.net/?f=%28%5Cfrac%20%7B12%7D%20%7B2%7D%29%20%5E%202%20%3D%2036)
So, we have:
![f (x) = 4 (x^2 + 12x + 36-36) + 10](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%204%20%28x%5E2%20%2B%2012x%20%2B%2036-36%29%20%2B%2010)
Step 3:
We simplify:
![f (x) = 4 (x^2 + 12x + 36) + 10- (4 * 36)](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%204%20%28x%5E2%20%2B%2012x%20%2B%2036%29%20%2B%2010-%20%284%20%2A%2036%29)
Step 4:
We factor:
![f (x) = 4 (x + 6) ^ 2-134](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%204%20%28x%20%2B%206%29%20%5E%202-134)
Thus, ![h = -6\ and\ k = -134](https://tex.z-dn.net/?f=h%20%3D%20-6%5C%20and%5C%20k%20%3D%20-134)
Answer:
The equation in the form of vertex is:
, and the vertex is ![(h, k) = (- 6, -134)](https://tex.z-dn.net/?f=%28h%2C%20k%29%20%3D%20%28-%206%2C%20-134%29)