The answer is 2/3
I hope this works for you :)
Answer:

After 7.40 years it will be worth less than 21500
Step-by-step explanation:
This problem is solved using a compound interest function.
This function has the following formula:

Where:
P is the initial price = $ 34,000
n is the depreciation rate = 0.06
t is the elapsed time
The equation that models this situation is:

Now we want to know after how many years the car is worth less than $ 21500.
Then we do y = $ 21,500. and we clear t.

After 7.40 years it will be worth less than 21500
Answer:
z≈3.16
p≈0.001
we reject the null hypothesis and conclude that the student knows more than half of the answers and is not just guessing in 0.05 significance level.
Step-by-step explanation:
As a result of step 2, we can assume normal distribution for the null hypothesis
<em>step 3:</em>
z statistic is computed as follows:
z=
where
- X is the proportion of correct answers in the test (
) - M is the expected proportion of correct answers according to the null hypothesis (0.5)
- p is the probability of correct answer (0.5)
- N is the total number of questions in the test (40)
z=
≈ 3.16
And corresponding p value for the z-statistic is p≈0.001.
Since p<0.05, we reject the null hypothesis and conclude that the student knows more than half of the answers and is not just guessing in 0.05 significance level.
Y = 18( 0.58) ^t
It would be written as :
Y = 18(0.11) ^ (t/4)
Y = 18 (0.11 ^ (1/4)) ^ t
But
0.11 ^ (1/4) = 0.5759
Plug the value
Y = 18 (0.5759) ^ t
Two decimal point :
Y = 18 (0.58) ^ t