Answer:
1.22 x 10²⁵ molecules CO₂
Explanation:
To find the amount of molecules, you need to multiply the number of moles by Avogadro's Number. Avogadro's Number is a ratio which represents the amount of molecules per every 1 mole. It is important to arrange this ratio in a way that allows for the cancellation of units (since you are going from moles to molecules, moles should be in the denominator). The final answer should have 3 sig figs like the given value.
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
20.2 moles CO₂ 6.022 x 10²³ molecules
--------------------------- x -------------------------------------- = 1.22 x 10²⁵ molecules
1 mole
Answer:
V₂ = 12.5 mL
Explanation:
Given data:
Initial volume = 100.0 mL
Initial pressure = 50.0 KPa
Final volume = ?
Final pressure = 400.0 KPa
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
50.0 KPa × 100.0 mL = 400 KPa × V₂
V₂ = 5000 KPa.mL/ 400 KPa
V₂ = 12.5 mL
Answer:
organs is the right answer
The pressure would increase. When the temperature change form cold to hot, the gas will find ways to escape from containment. Thus, if it cannot escape that pressure will keep on increasing as the temperature rises.
The chemical formula for the compound magnesium perchlorate is Mg(ClO₄)₂
Magnesium perchlorate or Mg(ClO₄)₂ is an ionic compound.
Perchlorate here is an anion which is represented by ClO₄⁻. Perchlorate is a polyatiomic anion, where one Cl atom is bonded to four O atoms.
The magnesium cation is represented by Mg²⁺
So one Mg²⁺ cation combines with two ClO₄⁻ anion to form one molecule of Mg(ClO₄)₂