Answer:
either first or second if not them try d but I'm pretty sure a also I'm sorry if I getbyou this wrong I dearly apologize
Answer:
The correct answer is 160.37 KJ/mol.
Explanation:
To find the activation energy in the given case, there is a need to use the Arrhenius equation, which is,
k = Ae^-Ea/RT
k1 = Ae^-Ea/RT1 and k2 = Ae^-Ea/RT2
k2/k1 = e^-Ea/R (1/T2-1/T1)
ln(k2/k1) = Ea/R (1/T1-1/T2)
The values of rate constant k1 and k2 are 3.61 * 10^-15 s^-1 and 8.66 * 10^-7 s^-1.
The temperatures T1 and T2 are 298 K and 425 K respectively.
Now by filling the values we get:
ln (8.66*10^-7/3.61*10^-15) = Ea/R (1/298-1/425)
19.29 = Ea/R * 0.001
Ea = 160.37 KJ/mol
It is called a waxxing gibbous, pls brainliest
8.3mL
Explanation:
Given parameters:
Mass of acetone = 6.54g
Density of acetone = 0.7857 g/mL
Unknown:
Volume of acetone = ?
Solution:
Density is defined as the mass per unit volume of a substance. It is expressed mathematically as shown below:
Density = 
Since the unknown is volume, we make it the subject of the formula
Volume = 
Input the values;
Volume =
= 8.3mL
learn more:
Volume brainly.com/question/2690299
#learnwithBrainly
Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles