Answer: 4 x 106
That’s how you write forty million in scientific notation.
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Answer:
67
Explanation:
- The atomic number (Z) of an atom is equal to the number of protons in the nucleus
- The mass number (A) of an atom is equal to the sum of protons and neutrons in the nucleus
Therefore, calling p the number of protons and n the number of neutrons, for element X we have:
Z = p = 23
A = p + n = 90
Substituting p=23 into the second equation, we find the number of neutrons:
n = 90 - p = 90 - 23 = 67
Answer:
6200 J
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
The car is initially stationary. The truck and car stick together after the collision, so they have the same final velocity. Therefore:
m₁ u₁ = (m₁ + m₂) v
Solving for the truck's initial velocity:
(2700 kg) u = (2700 kg + 1000 kg) (3 m/s)
u = 4.11 m/s
The change in kinetic energy is therefore:
ΔKE = ½ (m₁ + m₂) v² − ½ m₁ u²
ΔKE = ½ (2700 kg + 1000 kg) (3 m/s)² − ½ (2700 kg) (4.11 m/s)²
ΔKE = -6200 J
6200 J of kinetic energy is "lost".