Missing graph. I attach it in the answer.
In a uniformly accelerated motion, the velocity at time t is given by:

where a is the acceleration and t is the time.
Given the previous equation, if we plot v(t) versus t, we find a straight line; moreover, a (the acceleration) represents the slope of the curve.
Looking at the graph, we see that when the time goes from 10 s to 20 s, the velocity increases from 4 m/s to 6 m/s. Therefore the slope of the curve is

and this corresponds to the acceleration.
So, the correct answer is <span>
0.2 m/s2.</span>
Answer:
Ek = 1705.28 [J]
Explanation:
In order to solve this problem, we must remember that kinetic energy can be calculated by means of the following equation.

where:
m = mass [kg]
v = velocity [m/s]
Ek = kinetic energy [J] (Units of Joules)
<u>For the person running</u>
<u />
<u />
<u />
<u>For the bullet</u>
<u />
<u />
<u />
<u />
<u />
The difference in Kinetic energy is equal to:
Ek = 2025 - 319.72
Ek = 1705.28 [J]
A. elastic motion because that's the answer
Answer: from the information given, the velocity of the water will decrease but the pipe size will remain the same.
This can be proved with bernoulli's equation.
Explanation: careful analysis of the system using bernoulli's equation of flow is shown in the image attached
Answer:
The car C has KE = 100, PE = 0
Explanation:
The principle of conservation of energy states that although energy can be transformed from one form to another, the total energy of the given system remains unchanged.
The energy that a body possesses due to its motion or position is known as mechanical energy. There are two kinds of mechanical energy: kinetic energy, KE and potential energy, PE.
Kinetic energy is the energy that a body possesses due to its motion.
Potential energy is the energy a body possesses due to its position.
From the principle of conservation of energy, kinetic energy can be transformed into potential energy and vice versa, but in all cases the energy is conserved or constant.
In the diagram above, the cars at various positions of rest or motion are transforming the various forms of mechanical energy, but the total energy is conserved at every point. At the point A, energy is all potential, at B, it is partly potential partly kinetic energy, However, at the point C, all the potential energy has been converted to kinetic energy. At D, some of the kinetic energy has been converted to potential energy as the car climbs up the hill.
Therefore, the car C has KE = 100, PE = 0