Answer:
x^2 - 6x + 9.
Step-by-step explanation:
f(x) = x^2 and g(x) = x - 3.
To find f(g(x)) we replace the x in f(x) by g(x).
f(g(x)) = (x - 3)^2
= x^2 - 6x + 9.
Answer:
y=14; x=72
Step-by-step explanation:
y=(21×2)/3; x=(48×21)/14
By using <span>De Moivre's theorem:
</span>
If we have the complex number ⇒ z = a ( cos θ + i sin θ)
∴
![\sqrt[n]{z} = \sqrt[n]{a} \ (cos \ \frac{\theta + 360K}{n} + i \ sin \ \frac{\theta +360k}{n} )](https://tex.z-dn.net/?f=%20%5Csqrt%5Bn%5D%7Bz%7D%20%3D%20%20%5Csqrt%5Bn%5D%7Ba%7D%20%5C%20%28cos%20%5C%20%20%5Cfrac%7B%5Ctheta%20%2B%20360K%7D%7Bn%7D%20%2B%20i%20%5C%20sin%20%5C%20%5Cfrac%7B%5Ctheta%20%2B360k%7D%7Bn%7D%20%29)
k= 0, 1 , 2, ..... , (n-1)
For The given complex number <span>⇒ z = 81(cos(3π/8) + i sin(3π/8))
</span>
Part (A) <span>
find the modulus for all of the fourth roots </span>
<span>∴ The modulus of the given complex number = l z l = 81
</span>
∴ The modulus of the fourth root =
Part (b) find the angle for each of the four roots
The angle of the given complex number =

There is four roots and the angle between each root =

The angle of the first root =

The angle of the second root =

The angle of the third root =

The angle of the fourth root =
Part (C): find all of the fourth roots of this
The first root =

The second root =

The third root =

The fourth root =
If x + y = 6, then solve for y to get: y = 6 - x.
Now replace y with 6 - x in both equations.
(5x)/3 + 6 - x = c
2(6 - x) = c - 4x
The upper equation is solved for c.
Now we solve the lower equation for c.
c = 2(6 - x) + 4x
c = 12 - 2x + 4x
c = 2x + 12
Since we have two equations solved for c, we substitute to get
(5x)/3 + 6 - x = 2x + 12
This is an equation in only x, so we can solve for x.
(5x)/3 - 3x = 6
5x - 9x = 18
-4x = 18
x = -9/2
Now we solve for y.
x + y = 6
-9/2 + y = 6
y = 9/2 + 12/2
y = 21/2
Now we solve for c.
c = (5x)/3 + y
c = (5 * (-9/2))/3 + 21/2
c = -45/6 + 21/2
c = -15/2 + 21/2
c = 6/2
c = 3
Answer: c = 3
The answer is
D 18 3
I'm pretty sure