we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
Answer:
0.84
Step-by-step explanation:
Use a calculator. That would be 0.84.
3*21
Note that 63/75 = ---------- = 21/25. Multiplying top and bottom by 4 results
3/25 in 0.84 (so this answer checks out ok)

- Given - <u>an </u><u>equation</u><u> </u><u>in </u><u>a </u><u>standard</u><u> </u><u>form</u>
- To do - <u>simplify</u><u> </u><u>the </u><u>equation</u><u> </u><u>so </u><u>as </u><u>to </u><u>obtain </u><u>an </u><u>easier </u><u>one</u>
<u>Since </u><u>the </u><u>equation</u><u> </u><u>provided </u><u>isn't</u><u> </u><u>i</u><u>n</u><u> </u><u>it's</u><u> </u><u>general</u><u> </u><u>form </u><u>,</u><u> </u><u>let's</u><u> </u><u>first </u><u>convert </u><u>it </u><u>~</u>
<u>General</u><u> </u><u>form </u><u>of </u><u>a </u><u>Linear</u><u> equation</u><u> </u><u>-</u>

<u>T</u><u>he </u><u>equation</u><u> </u><u>after </u><u>getting</u><u> </u><u>converted</u><u> </u><u>will </u><u>be </u><u>as </u><u>follows</u><u> </u><u>~</u>

hope helpful ~
Answer:
What is the measurements?
Step-by-step explanation: