Answer:
DE = 20units
Step-by-step explanation:
In Δ ABC,
angle A is congruent to angle B.... (given)
therefore, ΔABC is an isoceles triangle.
therefore, CA = CB..... (side opposite to congruent angles are congruent in an isoceles triangle)
therefore, CB = 4 units
In ΔCDE,
angle D is congruent to angle E.... (given)
therefore, ΔCDE is an isoceles triangle.
therefore, CD = CE
therefore, CD = 8 units
ΔCDE ~ ΔCBA
therefore,
![\frac{cd}{cb} = \frac{ce}{ca} = \frac{de}{ab} \\ therefore \: \frac{8}{4} = \frac{8}{4} = \frac{de}{10 } \\ therefore \\ \frac{2}{1 } = \frac{de}{10 } \\ de \: = 2 \times 10 = 20units](https://tex.z-dn.net/?f=%20%5Cfrac%7Bcd%7D%7Bcb%7D%20%20%3D%20%20%5Cfrac%7Bce%7D%7Bca%7D%20%3D%20%20%5Cfrac%7Bde%7D%7Bab%7D%20%20%20%5C%5C%20therefore%20%5C%3A%20%20%5Cfrac%7B8%7D%7B4%7D%20%20%3D%20%20%5Cfrac%7B8%7D%7B4%7D%20%20%3D%20%20%5Cfrac%7Bde%7D%7B10%20%7D%20%20%5C%5C%20therefore%20%5C%5C%20%20%5Cfrac%7B2%7D%7B1%20%7D%20%20%3D%20%20%5Cfrac%7Bde%7D%7B10%20%7D%20%20%5C%5C%20de%20%5C%3A%20%20%3D%202%20%5Ctimes%2010%20%3D%2020units)
Answer:
10 sides (decagon)
Step-by-step explanation:
You find the perimeter by adding up all the sides of a shape.
side + side + side + side... = perimeter
You know that <em>each</em> side is 4/5 centimeters. You also know that the perimeter is 8 centimeters.
<u>You can set up an equation like this:</u>
4/5 * number of sides = 8
<em>or you can write it in a simpler form as:</em>
4/5x=8
<u>Now solve it like a normal equation:</u>
5 * (4/5x) = (8) * 5
(4x) / 4=(40) / 4
x = 10
So, you know the shape has 10 sides that are 4/5 centimeters each.
Answer:
158,400
Step-by-step explanation:
I did the math hope this helps
So you want two groups that are in a ratio of 4 to 7
so 33=4x+7x
so 33=11x
so x=3
that means the groups are 4*3= 12 and 7*3=21
We have been given that the circular opening of an ice cream cone has a diameter of 7 centimeters. The height of the cone is 10 centimeters. We are asked to find the volume of the ice cream cone in cubic centimeters.
We will use volume of cone formula to solve our given problem.
, where,
r = Radius
h = Height.
We know that diameter is two times the radius, so radius of cone would be half the diameter that is
cm.
![V=\frac{1}{3}\pi\cdot (\frac{7}{2}\text{ cm})^2\cdot 10\text{ cm}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%5Ccdot%20%28%5Cfrac%7B7%7D%7B2%7D%5Ctext%7B%20cm%7D%29%5E2%5Ccdot%2010%5Ctext%7B%20cm%7D)
![V=\frac{1}{3}\pi\cdot \frac{49}{4}\text{ cm}^2\cdot 10\text{ cm}](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%5Ccdot%20%5Cfrac%7B49%7D%7B4%7D%5Ctext%7B%20cm%7D%5E2%5Ccdot%2010%5Ctext%7B%20cm%7D)
![V=\frac{490\pi }{12}\text{ cm}^3](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B490%5Cpi%20%7D%7B12%7D%5Ctext%7B%20cm%7D%5E3)
![V=128.2817\text{ cm}^3](https://tex.z-dn.net/?f=V%3D128.2817%5Ctext%7B%20cm%7D%5E3)
Upon rounding to nearest tenth, we will get:
![V\approx 128.3\text{ cm}^3](https://tex.z-dn.net/?f=V%5Capprox%20128.3%5Ctext%7B%20cm%7D%5E3)
Therefore, the volume of the cone would be approximately 128.3 cubic cm.