The slope of the green line if the lines are perpendicular is -1/4
<h3>Perpendicular lines</h3>
For two lines two be perpendicular, the product of their slope must be -1. Let the slope of the red and green line be m1 and m2.
Given the following
Slope of red line = 4
According the definition
4m2 = -1
m2 = -1/4
Hence the slope of the green line if the lines are perpendicular is -1/4
Learn more on perpendicular lines here: brainly.com/question/1202004
#SPJ1
If <em>x</em>² + <em>y</em>² = 1, then <em>y</em> = ±√(1 - <em>x</em>²).
Let <em>f(x)</em> = |<em>x</em>| + |±√(1 - <em>x</em>²)| = |<em>x</em>| + √(1 - <em>x</em>²).
If <em>x</em> < 0, we have |<em>x</em>| = -<em>x</em> ; otherwise, if <em>x</em> ≥ 0, then |<em>x</em>| = <em>x</em>.
• Case 1: suppose <em>x</em> < 0. Then
<em>f(x)</em> = -<em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = -1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = -1/√2 → <em>y</em> = ±1/√2
• Case 2: suppose <em>x</em> ≥ 0. Then
<em>f(x)</em> = <em>x</em> + √(1 - <em>x</em>²)
<em>f'(x)</em> = 1 - <em>x</em>/√(1 - <em>x</em>²) = 0 → <em>x</em> = 1/√2 → <em>y</em> = ±1/√2
In either case, |<em>x</em>| = |<em>y</em>| = 1/√2, so the maximum value of their sum is 2/√2 = √2.
We will calculate this by using ratios and because these two triangles are similar, which is very important.
Explanation:
We see that the FG = 9 corresponds to the VU = 21. Therefore, FH = 18 corresponds to the UW = x.
9 : 21 = 18 : x
x = (21*18)/9
x = 378/9
x = 42.
The correct answer is B. 42.