While both a and c work the most likely answer that they want would be A because it represent the cents already and it shows all possible ways that those two values can be split among 1 dollar
Answer:
Step-by-step explanation:
You know how subtraction is the <em>opposite of addition </em>and division is the <em>opposite of multiplication</em>? A logarithm is the <em>opposite of an exponent</em>. You know how you can rewrite the equation 3 + 2 = 5 as 5 - 3 = 2, or the equation 3 × 2 = 6 as 6 ÷ 3 = 2? This is really useful when one of those numbers on the left is unknown. 3 + _ = 8 can be rewritten as 8 - 3 = _, 4 × _ = 12 can be rewritten as 12 ÷ 4 = _. We get all our knowns on one side and our unknown by itself on the other, and the rest is computation.
We know that ; as a logarithm, the <em>exponent</em> gets moved to its own side of the equation, and we write the equation like this: , which you read as "the logarithm base 3 of 9 is 2." You could also read it as "the power you need to raise 3 to to get 9 is 2."
One historical quirk: because we use the decimal system, it's assumed that an expression like uses <em>base 10</em>, and you'd interpret it as "What power do I raise 10 to to get 1000?"
The expression means "the power you need to raise 10 to to get 100 is x," or, rearranging: "10 to the x is equal to 100," which in symbols is .
(If we wanted to, we could also solve this: , so )
Answer:
(A+B)(A+B)=A.A+B.A+A.B+B.B
Step-by-step explanation:
Given that matrices A and B are nxn matrices
We need to find (A+B)(A+B)
For understanding the multiplication of matrices let'take A is mxn and B is pxq matrices,we can multiple only when n=p,so our Ab matrices will be mxq.
We know that that in matrices AB is not equal to BA.
Now find
(A+B)(A+B)=A.A+B.A+A.B+B.B
So from we can say that (A+B)(A+B) is not equal to A.A+2B.A+B.B because AB is not equal to BA in matrices.
So (A+B)(A+B)=A.A+B.A+A.B+B.B
It is an acute triangle because none of its angles are equal to (right) or above (obtuse) 90 degrees.