So 2/3 as a decimal would be 0.66 and 7/8 as a decimal would be 0.125 so if you subtract the 2 decimals it would give you the answer of 49 slices.
i hope i'm right! :)
1 3
1 2
2.36
x5.4
--------
944
+1180
---------
12.744
Refer to the figure shown below.
x = the width of the rectangle (meters)
y = the height of the rectangle (meters(
The fencing for the perimeter of the rectangle costs $30 per meter.
The two inner partitions cost $25 per meter.
The total cost of the fencing is
C = 2(x+y)*$30 + 2y*$25
= 60(x+y) + 50y
= 60x + 110y
Because the amount available to spend is $600, therefore
60x + 110y = 6000
or
6x + 11y = 600
That is,
y = (600 - 6x)/11 (1)
The area is
A = x*y (2)
Substitute (1) into (2).
A = (x/11)*(600 - 6x) = (1/11)*(600x - 6x²)
To maximize A, the derivative of A with respect to x is zero.
That is,
600 - 12x = 0
x = 600/12 = 50
From (1), obtain
y = (1/11)*(600 - 6*50) = 300/11 = 27.273
Because the second derivative of A with respect to x is negative, x=50, y = 27.273 will yield the maximum area.
The maximum area is
50*27.273 = 1363.64 m² = 1364 m² (nearest integer)
Answer: 1364 m² (nearest integer)
Answer:
5x^2-12x-2
Step-by-step explanation:
Use distributive property, then add like terms. See file below for steps.
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5