1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
12

Common transparent tape becomes charged when pulled from a dispenser. If one piece is placed above another, the repulsice force

can be great enough to support the top pieces weight. Assuming equal point charges, calculate the magnitide of the charge if electrostatic force is great enough to support the weight of a 11.0 mg piece of tape held 1.00 cm above another.
Physics
1 answer:
Dmitriy789 [7]3 years ago
6 0

Answer:

Q = 1.095 x 10^-9 C

Let the force experienced by the top piece of tape be F

F = kQ²/r²

r = distance between the two pieces tape = 1.00cm = 1.00 x 10^ -2 m

1/4(pi)*Eo = k = 8.99 x 10^9 Nm²/C²

The electric force of repulsion between the two charges and the weight of the top piece of tape are equal so

F = kQ²/r² = mg

Where m is the mass of the top piece of tape and g is the acceleration due to gravity

On re-arranging the equation above,

Q² = mgr²/k

Q² = ((11.0 x 10^-6) x 9.8 x (1.00x10^-2)²)/(8.99 x 10^9)

Q = 1.095x10^-9 C

Explanation:

The charge Q on both pieces of tape are equal and both act with a force of repulsion on each other.

The force of repulsion between both tapes pushes the top piece of tape upwards. The weight of the top piece of tape acts vertically downward. Since the top tape is in a position of equilibrium, the two forces acting on the top piece of tape must be equal to each other. This assumption is backed up by newton's first law of motion which states that the summation of all forces acting on a body at rest must be equal to zero. That is

Fe (electric force) - Fg (gravitational force) = 0

Fe = Fg

kQ²/r² = mg

On substituting the respective values for all variables except Q and rearranging the equation Q = 1.09 x 10^-9

You might be interested in
A 873-kg (1930-lb) dragster, starting from rest completes a 401.4-m (0.2509-mile) run in 4.945 s. If the car had a constant acce
Delvig [45]

To solve this problem it is necessary to apply the kinematic equations of motion.

By definition we know that the position of a body is given by

x=x_0+v_0t+at^2

Where

x_0 = Initial position

v_0 = Initial velocity

a = Acceleration

t= time

And the velocity can be expressed as,

v_f = v_0 + at

Where,

v_f = Final velocity

For our case we have that there is neither initial position nor initial velocity, then

x= at^2

With our values we have x = 401.4m, t=4.945s, rearranging to find a,

a=\frac{x}{t^2}

a = \frac{ 401.4}{4.945^2}

a = 16.41m/s^2

Therefore the final velocity would be

v_f = v_0 + at

v_f = 0 + (16.41)(4.945)

v_f = 81.14m/s

Therefore the final velocity is 81.14m/s

8 0
3 years ago
ABCD next 3 letters??????
jasenka [17]

Answer:EFG

Explanation:AYEEE

8 0
3 years ago
Read 2 more answers
Consider two diffraction gratings. One grating has 3000 lines per cm, and the other one has 6000 lines per cm. Both gratings are
Usimov [2.4K]

Answer:

<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>

Explanation:

A diffraction grating is an optical component with a periodic (usually one  that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.

The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.

For a plane diffraction grating, the angular positions of principle maxima is given by

(a + b) sin ∅n = nλ

where

a+b is the distance between two consecutive slits

n is the order of principal maxima

λ is the wavelength of the light

From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.

In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.

7 0
3 years ago
10 m/s is _____miles per hour?<br> A.)33.6<br> B.)22.4<br> C.)44.8<br> D.)56
vazorg [7]

Answer:

22.4

Explanation:

4 0
2 years ago
A crow is flying horizontally with a constant speed of 2.70 m/s when it releases a clam from its beak. the clam lands on the roc
vovangra [49]

Part a)

in horizontal direction there is no gravity or no other acceleration

so in horizontal direction the speed of clam will remain same

v_x = 2.70 m/s

Part b)

In vertical direction we can use kinematics

v_f = v_i + at

v_f = 0 + 2.1 * 9.8

v_f = 20.6 m/s

part c)

if the speed of crow will be increased then the horizontal speed of the clam will also increase but there is no change in the vertical speed

5 0
3 years ago
Other questions:
  • Can you answer these questions please
    6·2 answers
  • When all parts of a circuit are composed of conducting materials, the circuit is said to be
    6·1 answer
  • If the tensile strength of the Kevlar 49 fibers is 0.550 x 106 psi and that of epoxy resin is 11.0 x103 psi, calculate the stren
    5·1 answer
  • Read through the and calculate the predicted change in kinetic energy of the oblect compared to 50 kg ball traveling at 10 m/s .
    5·1 answer
  • Sarah drives her car
    13·1 answer
  • It appears as though the moon disappears and the sun comes out in the daytime. Based on what you know, explain why this is happe
    11·2 answers
  • Which will have a larger momentum when moving at the same speed: a 2,000-kg truck or a 1,000-kg sedan
    6·1 answer
  • All power plants use fuel to supply energy that turns into:
    12·1 answer
  • A 5000kg freight car moving at 2 m/s East collides with a 10,000kg freight car at rest. Upon collision, they got stuck and moved
    6·1 answer
  • A horizontal force F~ is applied to a block of mass m = 1 kg placed on an inclined
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!