Answer:
<h3>The Moon brings perspective. Observing the Moon, and I mean really looking – sitting comfortably, or lying down on a patch of grass and letting her light fill your eyes, it's easy to be reminded of how ancient and everlasting the celestial bodies are. When I do this, it always puts my life into perspective.</h3>
Answer: vl = 2.75 m/s vt = 1.5 m/s
Explanation:
If we assume that no external forces act during the collision, total momentum must be conserved.
If both cars are identical and also the drivers have the same mass, we can write the following:
m (vi1 + vi2) = m (vf1 + vf2) (1)
The sum of the initial speeds must be equal to the sum of the final ones.
If we are told that kinetic energy must be conserved also, simplifying, we can write:
vi1² + vi2² = vf1² + vf2² (2)
The only condition that satisfies (1) and (2) simultaneously is the one in which both masses exchange speeds, so we can write:
vf1 = vi2 and vf2 = vi1
If we call v1 to the speed of the leading car, and v2 to the trailing one, we can finally put the following:
vf1 = 2.75 m/s vf2 = 1.5 m/s
Answer:
Explanation:add them then divide them by 100 I think
When the initial speed given is 7.5m/s at an angle of 27° , ball will go
4.637 meters.
Assume no air opposition to the ball ;
Vertical component of ball is sin 27° = 0.453
0.453* 7.5 = 3.404 meters /sec
Time taken to reach ground is :
3.404 = -3.404+9.8*t
t= 6.808/9.8= 0.694 sec
Horizontal component is 7.5*cos27°= 6.682m/s
Distance = speed * time
=6.682 * 0.694
=4.637 meters
Horizontal distance it can cover in 0.694 sec is 4.637 meters
So range of ball is 4.637 meters.
Form of motion experienced by an object or particle that is projected near surface of the earth and moves along a curve is called Projectile motion. Three types of projectile motion are Horizontal projectile motion. Oblique projectile motion and Projectile motion on an inclined plane.
To know more about projectile motion, refer
brainly.com/question/24216590
#SPJ13