I think it’s 8 hours. I’m sorry if I’m wrong.
I just did 400 divided by 50
Answer:
Explanation:
Usually the angle between the y axis and x axis is 90° and we know that for furthest travel the degree angle must be 45° with the horizontal, Mo must release the ball about halfway between straight ahead and straight up
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
Color is what scientist use to determine the temperature of a star!
hope this helps!
First of all Longitudinal waves is a matter in the medium that moves parallel to the direction of the wave travels.
1st example: sound travels parallel.
2nd example: when you talk you will here your voice again. because all the frequency bounce back to you.
In the other hand Transverse wave matter in the medium moves perpendicular to direction the wave travels.
For example: light is a good example of transverse wave.