•respect
•love
•comunication
•understanding that's it hope this answer ur question
If the velocity is constant then the acceleration of the object is zero.
![a=0 (m/s^2)](https://tex.z-dn.net/?f=a%3D0%20%28m%2Fs%5E2%29)
Thus when we apply the equation
![\Delta X=vt+(at^2/2)](https://tex.z-dn.net/?f=%5CDelta%20X%3Dvt%2B%28at%5E2%2F2%29%20)
It remains
![\Delta X =vt](https://tex.z-dn.net/?f=%5CDelta%20X%20%3Dvt%20)
or equivalent
Given Information:
Resistance = R = 14 Ω
Inductance = L = 2.3 H
voltage = V = 100 V
time = t = 0.13 s
Required Information:
(a) energy is being stored in the magnetic field
(b) thermal energy is appearing in the resistance
(c) energy is being delivered by the battery?
Answer:
(a) energy is being stored in the magnetic field ≈ 219 watts
(b) thermal energy is appearing in the resistance ≈ 267 watts
(c) energy is being delivered by the battery ≈ 481 watts
Explanation:
The energy stored in the inductor is given by
![U = \frac{1}{2} Li^{2}](https://tex.z-dn.net/?f=U%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20Li%5E%7B2%7D)
The rate at which the energy is being stored in the inductor is given by
![\frac{dU}{dt} = Li\frac{di}{dt} \: \: \: \: eq. 1](https://tex.z-dn.net/?f=%5Cfrac%7BdU%7D%7Bdt%7D%20%3D%20Li%5Cfrac%7Bdi%7D%7Bdt%7D%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20eq.%201)
The current through the RL circuit is given by
![i = \frac{V}{R} (1-e^{-\frac{t}{ \tau} })](https://tex.z-dn.net/?f=i%20%3D%20%5Cfrac%7BV%7D%7BR%7D%20%281-e%5E%7B-%5Cfrac%7Bt%7D%7B%20%5Ctau%7D%20%7D%29)
Where τ is the the time constant and is given by
![\tau = \frac{L}{R}\\ \tau = \frac{2.3}{14}\\ \tau = 0.16](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%5Cfrac%7BL%7D%7BR%7D%5C%5C%20%5Ctau%20%3D%20%5Cfrac%7B2.3%7D%7B14%7D%5C%5C%20%5Ctau%20%3D%200.16)
![i = \frac{110}{14} (1-e^{-\frac{t}{ 0.16} })\\i = 7.86(1-e^{-6.25t})\\\frac{di}{dt} = 49.125e^{-6.25t}](https://tex.z-dn.net/?f=i%20%3D%20%5Cfrac%7B110%7D%7B14%7D%20%281-e%5E%7B-%5Cfrac%7Bt%7D%7B%200.16%7D%20%7D%29%5C%5Ci%20%3D%207.86%281-e%5E%7B-6.25t%7D%29%5C%5C%5Cfrac%7Bdi%7D%7Bdt%7D%20%3D%2049.125e%5E%7B-6.25t%7D)
Therefore, eq. 1 becomes
![\frac{dU}{dt} = (2.3)(7.86(1-e^{-6.25t}))(49.125e^{-6.25t})](https://tex.z-dn.net/?f=%5Cfrac%7BdU%7D%7Bdt%7D%20%3D%20%282.3%29%287.86%281-e%5E%7B-6.25t%7D%29%29%2849.125e%5E%7B-6.25t%7D%29)
At t = 0.13 seconds
![\frac{dU}{dt} = (2.3) (4.37) (21.8)\\\frac{dU}{dt} = 219.11 \: watts](https://tex.z-dn.net/?f=%5Cfrac%7BdU%7D%7Bdt%7D%20%3D%20%282.3%29%20%284.37%29%20%2821.8%29%5C%5C%5Cfrac%7BdU%7D%7Bdt%7D%20%3D%20219.11%20%5C%3A%20watts)
(b) thermal energy is appearing in the resistance
The thermal energy is given by
![P = i^{2}R\\P = (7.86(1-e^{-6.25t}))^{2} \cdot 14\\P = (4.37)^{2}\cdot 14\\P = 267.35 \: watts](https://tex.z-dn.net/?f=P%20%3D%20i%5E%7B2%7DR%5C%5CP%20%3D%20%287.86%281-e%5E%7B-6.25t%7D%29%29%5E%7B2%7D%20%5Ccdot%2014%5C%5CP%20%3D%20%284.37%29%5E%7B2%7D%5Ccdot%2014%5C%5CP%20%3D%20267.35%20%5C%3A%20watts)
(c) energy is being delivered by the battery?
The energy delivered by battery is
![P = Vi\\P = 110\cdot 4.37\\P = 481 \: watts](https://tex.z-dn.net/?f=P%20%3D%20Vi%5C%5CP%20%3D%20110%5Ccdot%204.37%5C%5CP%20%3D%20481%20%5C%3A%20watts)
From the above reaction the temperature of the surroundings will increase.