Answer:
The dimensionality of B is <em>length</em> per cubic <em>time</em>.
Explanation:
Units for displacement and time are <em>length</em> and <em>time</em> , respectively. Then, formula can be tested for dimensional analysis as follows:
Now, let is clear to determine its units:
The dimensionality of B is <em>length</em> per cubic <em>time</em>.
The time difference between their landing is 2.04 seconds.
<h3>
Time of difference of the two balls</h3>
The ball thrown vertical upwards will take double of the time taken by the ball thrown vertically downwards.
Time difference, = 2t - t = t
t = √(2h/g)
where;
- h is the height of fall
- g is acceleration due to gravity
Apply the principle of conservation of energy;
¹/₂mv² = mgh
h = v²/2g
where;
h = (20²)/(2 x 9.8)
h = 20.41 m
<h3>Time of motion</h3>
t = √(2 x 20.41 / 9.8)
t = 2.04 s
Thus, the time difference between their landing is 2.04 seconds.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
2m₁m₃g / (m₁ + m₂ + m₃)
Explanation:
I assume the figure is the one included in my answer.
Draw a free body diagram for each mass.
m₁ has a force T₁ up and m₁g down.
m₂ has a force T₁ up, T₂ down, and m₂g down.
m₃ has a force T₂ up and m₃g down.
Assume that m₁ accelerates up and m₂ and m₃ accelerate down.
Sum of the forces on m₁:
∑F = ma
T₁ − m₁g = m₁a
T₁ = m₁g + m₁a
Sum of the forces on m₂:
∑F = ma
T₁ − T₂ − m₂g = m₂(-a)
T₁ − T₂ − m₂g = -m₂a
(m₁g + m₁a) − T₂ − m₂g = -m₂a
m₁g + m₁a + m₂a − m₂g = T₂
(m₁ − m₂)g + (m₁ + m₂)a = T₂
Sum of the forces on m₃:
∑F = ma
T₂ − m₃g = m₃(-a)
T₂ − m₃g = -m₃a
a = g − (T₂ / m₃)
Substitute:
(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂
(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂
(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂
m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂
2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂
T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)