Answer: The company should produce 7 skateboards and 16 rollerskates in order to maximize profit.
Step-by-step explanation: Let the skateboards be represented by s and the rollerskates be represented by r. The available amount of labour is 30 units, and to produce a skateboard requires 2 units of labor while to produce a rollerskate requires 1 unit. This can be expressed as follows;
2s + r = 30 ------(1)
Also there are 40 units of materials available, and to produce a skateboard requires 1 unit while a rollerskate requires 2 units. This too can be expressed as follows;
s + 2r = 40 ------(2)
With the pair of simultaneous equations we can now solve for both variables by using the substitution method as follows;
In equation (1), let r = 30 - 2s
Substitute for r into equation (2)
s + 2(30 - 2s) = 40
s + 60 - 4s = 40
Collect like terms,
s - 4s = 40 - 60
-3s = -20
Divide both sides of the equation by -3
s = 6.67
(Rounded up to the nearest whole number, s = 7)
Substitute for the value of s into equation (1)
2s + r = 30
2(7) + r = 30
14 + r = 30
Subtract 14 from both sides of the equation
r = 16
Therefore in order to maximize profit, the company should produce 7 skateboards and 16 rollerskates.
The answer is b.
Because you multiply (5•12)
Answer:
60%
Step-by-step explanation:
20,000
we can move the decimal place one to the left to find 10 percent
2,000
multiply 10 x 2 to find twenty percent or 4,000
we add this to the original total. 24,000
then add the 8,000
32,000
we know find one percent of the original total
200
and find the difference between the two totals
32000-20000 = 12,000
12000 divided by 200 which is 6
multiply six by ten to get
60 percent
Here is how to do this problem:
|x+6| =0
x + 6 = 0
-6 -6
x = -6
209.1 is what your looking for