Answer
given,
cooling fan revolution = 850 rev/min
fan turns before revolution = 1500 revolutions


θ = 1500 revolution
θ = 1500 x 2 x π
θ = 9424.78 rad
a) using equation of rotation
ω² = ω₀² + 2 α θ
ω = 0 because body comes to rest
0 = 89² + 2 x α x 9424.78
α = -0.42 rad/s²
b) time take for the fan to stop
ω = ω₀ + α t
0 = 89 - 0.42 t

t = 211.9 s
Answer:
Because 'distance per second' is a velocity, not an acceleration.
Explanation:
Because 'distance per second' is a velocity, not an acceleration. For example, at 1 m/s an object is travelling a distance of 1 metre every second. But a rate of acceleration is a steady increase in velocity. So at 1 m/s^2, an object's velocity is increasing by 1 m/s every second.
Answer:
Ф = 2.179 eV
Explanation:
This exercise has electrons ejected from a metal, which is why it is an exercise on the photoelectric effect, which is explained assuming the existence of energy quanta called photons that behave like particles.
E = K + Ф
the energy of the photons is given by the Planck relation
E = h f
we substitute
h f = K + Ф
Ф= hf - K
the speed of light is related to wavelength and frequency
c = λ f
f = c /λ
Φ =
let's reduce the energy to the SI system
K = 0.890 eV (1.6 10⁻¹⁹ J / 1eV) = 1.424 10⁻¹⁹ J
calculate
Ф = 6.63 10⁻³⁴ 3 10⁸/405 10⁻⁹ -1.424 10⁻¹⁹
Ф = 4.911 10⁻¹⁹ - 1.424 10⁻¹⁹
Ф = 3.4571 10⁻¹⁹ J
we reduce to eV
Ф = 3.4871 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
Ф = 2.179 eV
The answer is A.
Sy = 1650 x sin30.5 = 837.4 m toward south
Sx = 1650 x cos30.5 = 1421.7 m toward east