<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
Answer:
DMs are not accessible anymore. I assume Zuka is a staff member? the only way to talk to a staff member anymore is to report something, but even then, the probably won't even look at what they're deleting :/
May I have brainliest please? :)
Answer:
u= 20.09 m/s
Explanation:
Given that
m = 0.02 kg
M= 2 kg
h= 0.2 m
Lets take initial speed of bullet = u m/s
The final speed of the system will be zero.
From energy conservation
1/2 m u²+ 0 = 0+ (m+M) g h
m u²=2 (m+M) g h
By putting the values
0.02 x u² = 2 (0.02+2) x 10 x 0.2 ( take g=10 m/s²)
u= 20.09 m/s
Refraction is the change in direction of a wave.
Diffraction is the bending of a wave around a barrier.
Answer:
The total Mechanical energy will be zero
Explanation: Escape velocity is the velocity required by a free object in order to overcome the impact of the force of gravity. The total mechanical energy of an object is the total energy possessed by an object which includes its kinectic and potential energy.
since the object is moving at an escape velocity which is 11.2m/s the object will be assumed to be weightless
Etotal = kinetic energy + potential energy
kinetic energy= 1/2*M*V*V
Potential energy=MGH
Etotal=1/2*0*11.2*11.2+0*0*0
Etotal=0+0
Etotal=0.