Sound waves are known to be the one that's not considered as a type of electromagnetic energy. As for microwaves and x-rays, they tend to share the same frequencies that can be considered as electromagnetic, and sound waves have a different frequency than them.
Answer:
a) The current is i = 1.2 A
b) The charge is Q = 17280 C
c) The energy is E = 43200 J
Explanation:
a) The current is given by the ohm's law wich is:
i = V/R = 3/2.5 = 1.2 A
b) Since the charge is steady we can use the following equation to find the charge amount in that time:
i = Q/t
Q = t*i
Where t is in seconds, so we have 4h * 3600 = 14400 s
Q = 1.2*14400 = 17280 C
c) The energy is the power delivered to the toy multiplied by the time:
P = 1.2*2.5 = 3 W
E = P*t = 3*14400 = 43200 J
Answer:
The momentum of an object is defined as the mass of the object times the velocity of the object, as P = m*v.
So the equipment needed would be:
Something to measure the mass of the object, like a balance.
Something to measure the speed of the object, like a doppler radar, or a simpler thing may be a cronometer, with that you can measure the amount of time that the object needs to travel a given distance, and with that you can obtain the speed of the object.
Now you can notice that speed is different than velocity, this is true, velocity is a vector, so this has a direction, then you need something to fix the direction in which the object moves, in this way you can determine the velocity.
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.