Because the act of braking is an example of negative acceleration.
Example: if the rate of braking was say 2 meters per second^2, and the starting velocity was 10 m/s, it would take 5 seconds to come to a stop(during those 5 seconds you would still be moving).
Answer:
The Solar System is the Sun and all the objects that orbit around it
The Sun is orbited by planets, asteroids, comets and other things. ...
It has strong gravity
There are many types of energies
three types are
kinetic energy
potential energy
gravitational energy
Answer:
Zeros to the left of a decimal can be insignificant place holders, such as in 0.043 (two significant figures).
They can be significant if they are between two digits who themselves are significant, such as in 101.000 (three significant figures).
In the case of a number like 1,000 we can see there is only one significant figure. The zero digits are not between sigfigs.
Answer:
3.117 m
Explanation:
Given that:
the distance of separation between speaker A and speaker B (L) = 6.69 m
Frequency (F) = 750 -Hz tone
Velocity of speed of sound = 343 m/s
The distance from Speaker A to the first point (L₁) on the line can be calculated by using the formula:

where A = 
we have:






∴ the distance from speaker A to the first point on the line between the speakers where constructive interference occurs = 3.117 m
:<span> </span><span>The gradient of the curve 1/x at x=2 is m = -¼
We may choose any length of line to represent the direction of the slope (direction vector) at that point. We could choose a line for which x = 2 and then y would have to be -½ so that the gradient is still = -½/2 = -¼. It is simply convenient to choose a unit length for x, making y = -¼ The length of the resultant of x and y is √(1²+¼²) = √(17/16) = √(17)/4 which is a direction vector. If we had taken the direction vector to be (2, ½) then we would have a resultant direction vector of √17/2. It doesn't really matter what length the direction vector is - it's job is only to show the direction. So their choice of 1 is quite arbitrary but convenient, since it is easy to work with units – that's why we use units!
Now, we know that the magnitude of the velocity vector must be 5 and the magnitude of our direction vector at the moment is √(17)/4. We therefore need to multiply this direction vector by 20/√(17) to get 5 – just try it : √(17)/4 × 20/√(17) = 5.
We could equally well have done this with (2, ½) and would have got 2½ for lambda.</span>