Answer:
And unless people interfere, thermal energy — or heat — naturally flows in one direction only: from hot toward cold. Heat moves naturally by any of three means. The processes are known as conduction, convection and radiation. Sometimes more than one may occur at the same time.
Answer:
if he is chasing his tail faster with each circle, then that would be acceleration, If not then no
The actual position of the object is <span>at a great distance, effectively infinite. The other options given in the question are not at all correct. The correct option among all the options that are given in the question is the last option or option "D". I hope that this answer has actually come to your great help.</span>
Answer:

Explanation:
We can use the following kinematics equations to solve this problem:
.
Using the first one to solve for acceleration:
.
Now we can use the second equation to solve for the distance travelled by the airplane:
(three significant figures).
Answer:
7.0s
Explanation:
Mass = 0.41kg
F= 81N
t = 0.22s
¤ = 29°
Lo = 86m
From impulse equation,
F*t = m* v
81 * 0.22 = 0.41 * v
Vo = 17.82 / 0.41
Vo = 43.46m/s
Vx= velocity across horizontal plane
Vy = velocity across vertical plane
Vx = Vo * cos ¤
Vy = Vo * sin ¤
Vx = 43.46 * cos 30° = 37.64 m/s
Vy = 43.46 sin 30° = 21.73 m/s
Distance travelled across the vertical plane,
L = Lo + Vy *t + ½gt²
0 = 86 + 21.73t - 4.9t²
4.9t² - 21.73t - 86 = 0
Solving for t in the quadratic equation,
t = 6.96 or -10.04
Using the positive root since time can't be negative, t = 6.96 approximately 7.0s