Answer:
Mars was the Roman god of War along with an agricultural guardian. He is most closely related to the god Ares of Greek Mythology. In Roman mythology, he was second in importance to Jupiter, Rome's god of the Skies and Weather. Jupiter was the king of the Roman Pantheon, husband of the queen of gods Juno. He was also Mars' father. Unlike his Greek Counterpart, Ares who was most known for his hot headed temper and associated with hate and anger, Mars was part of the Romans <em>Archaic Triad</em>, sort of like the Big Three of Greek religion. The members of said Triad included Mars, Jupiter, and Quirinus, who had no Greek equivalent. Mars was most commonly depicted in posed of valor and strength, carrying swords or shields. He wore common Roman armor, including the plumed helmet. He was pictured as a strong leader of the Roman Army. The fourth planet from the Sun was given the name Mars when it was first discovered because it was red, much like the main color the Roman god was affiliated with.
This was mostly just random facts but i hope it helped some with your essay :)
27) Velocity and time
28) it indicates increasing velocity
29) It is moving in constant velocity which means no acceleration.
There are two qualities that can describe most variables - direction and magnitude. A vector possesses both a direction and magnitude, while a scalar possesses only a magnitude.
Hope this helps!
Answer:
D. The ice-to-liquid phase change of water requires less energy than the liquid-to-vapor phase.
Explanation:
In the phase change from liquid to gas, the bonds between atoms are completely broken. The phase change from liquid to gas requires more energy because the bonds must be completely broken for it to take place, rather than just loosened as in the phase change of solid to liquid.
Phase changes can have a strong stabilizing effect on temperatures that are not near the melting and boiling points, since evaporation and condensation occur even at temperatures below the boiling point.
More energy is required to evaporate water below the boiling point than at the boiling point, because the kinetic energy of water molecules at temperatures below 100°C is less than that at 100°C, so less energy is available from random thermal motions.