Answer:
the y-intercept in “y = -3x + 8 (slope-intercept form of the given line),” is 8.
Step-by-step explanation:
to find a parallel line to a given line, you must know how to write an equation of a line. You must also know how to put the equation of a line in slope-intercept form. Additionally, you must know how to identify the slope and the Y-intercept in the equation of a line. It is important to remember that parallel lines have equal slopes. Learn how to be able to find a parallel line.
Look at the equation of the line. Let’s say “3x + y = 8” is the equation of the given line. Put the equation of the given line in slope-intercept form: y = mx + b. Using “3x + y = 8” as the equation of the given line, put the equation in slope-intercept form by solving for "y" (subtracting -3x from both sides). You will get “y = -3x + 8.”
<u><em>Identify the slope. The slope is the "m" in “y = mx + b.” Therefore, the slope in “y = -3x + 8 (slope-intercept form of the given line),” is -3. Identify the y-intercept. The y-intercept is the b in “y = mx + b.” Therefore, the y-intercept in “y = -3x + 8 (slope-intercept form of the given line),” is 8.</em></u>
<u><em> HOPE THIS HELPS HAVE A GREAT DAY!!</em></u>