Answer:
The first step when factoring any polynomial is to factor out the GCF. The GCF is the greatest common factor for all the terms of the polynomial. By factoring out the GCF first, the coefficients and constant term of the polynomial will be reduced.
<span>The urn contains 2 purple balls and 4 white balls. The player pay $4 for start the game and get $1.5 for every ball drawn until one purple ball is drawn. The maximal revenue would be $7.5 when 4 white balls and 1 purple balls are drawn.
If the purple ball is p and white ball is w, t</span>he possible sample space of drawings are {p, wp, wwp, wwwp, wwwwp}
<span>1. Write down the probability distribution for the player earning
The player earning </span>for each event depends on the number of balls drawn subtracted the ticket price.<span>
p= 2/6
The player earnings would be: 1*$1.5 -$4= - $2.5
wp= (4*2)/(6*5) = 4/15
</span>The player earnings would be: 2*1.5- $4= - $1
wwp= (4*3*2)/(6*5*4)= 1/5
The player earnings would be: 3*$1.5 -$4= $0.5
wwwp= (4*3*2*2)/(6*5*4*3*2)= 2/15
The player earnings would be: 4*$1.5 -$4= $2
wwwwp= (4*3*2*2*1)/(6*5*4*3*2*1) = 1/15
The player earnings would be: 5*$1.5 -$4= $3.5
2. Find its expected value
The expected value would be:
chance of event * earning
You need to combine the 5 possible outcomes from the number 1 to get the total expected value.
Total expected value= (1/3 * - 2.5)+ (4/15*-1) + (1/5*0.5) + (2/15 *2) + ( 1/15 *3.5)=
(-12.5 -4 + 1.5 + 4 + 3.5) /15= -$7.5
This game basically a rip off.
Given that the concentration has been modeled by the formula:
C(t)=50t/(t^2+25)
where:
t is time in hours.
The concentration after 5 hours will be given by:
t= 5 hours
plugging the value in the equation we get:
C(5)=(50(5))/(5^2+25)
simplifying the above we get:
C(5)=250/(50)=5 mg/dl
Answer: 5 mg/dl
Answer:
repeating non repeating non repeating non repeating
Step-by-step explanation:
Answer:
q= 10
Step-by-step explanation:
9q - 10q = -10
-q = -10
q= -10/-1 = 10