To gather more information and details on the soil
The gravitational force between a mass and the Earth is the object'sweight. Mass is considered a measure of an object's inertia, and its weight is the force exerted on the object in a gravitational field. On the surface of the Earth, the two forces are related by the acceleration due to gravity: Fg = mg.
Hoped this helped!
That is the mst best eway to find its solution.
37.4/2.2*10^3 = 0.017 gm/liter or 1.7*10^-2
so we conclude that option b is sorrect
Answer:
Explanation:
(b) The initial velocity is added to that due to acceleration by gravity. The velocity is increased linearly by gravity at the rate of 9.8 m/s². The average velocity of the pebble will be its velocity halfway through the 2-second time period.* That is, it will be ...
4 m/s + (9.8 m/s²)(2 s)/2 = 13.8 m/s . . . . average velocity
__
(a) The distance covered in 2 seconds at an average velocity of 13.8 m/s is ...
d = vt
d = (13.8 m/s)(2 s) = 27.6 m
The water is about 27.6 m below ground.
_____
* We have chosen to make use of the fact that the velocity curve is linear, so the average velocity is half the sum of initial and final velocities:
vAvg = (vInit + vFinal)/2 = (vInit + (vInit +at))/2 = vInit +at/2
__
If you work this in a straightforward way, you would find distance as the integral of velocity, then find average velocity from the distance and time.

The flow rate is 17gtts/min.
<h3>What is the drug infusion rate?</h3>
- The rate of infusion (or dosing rate) in pharmacokinetics refers to the ideal rate at which a drug should be supplied to achieve a steady state of a fixed dose that has been shown to be therapeutically effective. This rate is not only the rate at which a drug is administered.
- The infusion volume is divided into drops, which is known as a drip-rate. The Drip Rate formula is as follows: Volume (mL) times time (h) equals drip-rate. A patient must get 1,000 mL of intravenous fluids over the course of eight hours.
- Infusion rates of 3–4 mg/kg per minute are advised by manufacturers to reduce rate-related adverse effects. Usually, the infusion lasts for several hours. Although not advised, rates exceeding 5 mg/kg per hour may be tolerated by some patients.
- If no negative reactions occur, the rate may be increased in accordance with the table every 30 minutes up to a maximum rate of 3 ml/kg/hour (not to exceed 150 ml/hour).
To find the flow rate is 17gtts/min:

Therefore, The flow rate is 17gtts/min.
To learn more about infusion rate, refer to:
brainly.com/question/22761958
#SPJ9