The ball accelerates because of gravity.
Answer:
Electromagnets are special types of magnets that are made by passing current through coils of wire. To make an electromagnet, the minimum requirements are:
1. A nail (usually made of iron, steel or zinc)
2. Dry cell batteries
3. Wire (Usually copper wire)
Other things could be:
1. Electric tape to hold both ends of the wire properly at the battery terminals.
2. Scissors to cut the wire into desired length.
3. Iron fillings for testing purposes.
Your list of choices is a very short list, and doesn't include any
correct explanation.
The mass of an atom is roughly the number of protons AND neutrons
in its nucleus, but the element only depends on how many protons are there.
Different atoms of the same element may have different numbers of
neutrons, so their masses are different. But they're the same element,
because they all have the same number of protons.
Answer:
Total impulse = = Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.
Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:
The final momentum of the car is given as:
Therefore, the impulse is given as:
Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
Answer:
Pascal is a derived unit because <u>it</u><u> </u><u>cannot</u><u> </u><u>be</u><u> </u><u>expressed</u><u> </u><u>in</u><u> </u><u>any</u><u> </u><u>physics</u><u> </u><u>terms</u><u>,</u><u> </u><u>but</u><u> </u><u>it</u><u> </u><u>is</u><u> </u><u>an</u><u> </u><u>expression</u><u> </u><u>of</u><u> </u><u>fundamental</u><u> </u><u>quantities</u><u>.</u>
Explanation: