Interference and diffraction are the phenomena that support only the wave theory of light. Options 2 and 3 are correct.
<h3 /><h3>What is the interference of waves?</h3>
The result of two or more wave trains flowing in opposite directions on a crossing or coinciding pathways. This phenomenon is known as the interference of waves.
The phenomenon of interference occurs when two wave pulses are traveling along a string toward each other.
The light wave hypothesis states that light behaves like a wave. Since light is an electromagnetic wave, it may be transmitted without a physical medium.
Light has magnetic and electric fields, much like electromagnetic waves do.
Transverse waves, such as those seen in light waves, oscillate in the same direction as the wave's path. A wave of light may experience interference as well as diffraction as a result of these properties.
All of the remaining options are the light phenomenon.
Hence, options 2 and 3 are correct.
To learn more about the interference of waves refer to the link;
brainly.com/question/16098226
#SPJ1
Base in your question about the magnetic field of the Earth near the equator where as its almost horizontally to the north and has magnitude of B=0.5x10^-4t, the answer is <span>Velocity of electron will be westwards.</span>
Answer:
Explanation:
Moment of inertia of a disc = 1/2 M R²
Since mass is same for both and radius are r and 2r, their moment of inertia can be in the ratio of 1: 4 . Let them be I and 4I . Angular speed are ω₀ and - ω₀ .
We shall apply law of conservation of angular momentum .
initial total angular momentum
I x ω₀ - 4I x ω₀ = - 3Iω₀
Let final common angular momentum be ω
total final angular momentum = ( I + 4I ) ω
Applying law of conservation of angular momentum
( I + 4I ) ω = - 3Iω₀
ω = - 3 / 5 ω₀ .
b )
Initial total rotational K E
= 1/2 I ω₀² + 1/2 4I ω₀²
= 1/2 x5I ω₀²
Final total rotational K E
= 1/2 ( I + 4I ) ( - 3 / 5 ω₀ )²
= 1/2 x 9 / 5 I ω₀²
= 9 / 10I ω₀²
change in rotational kinetic energy = 9 / 10I ω₀² - 1/2 x5I ω₀²
(9/10 - 5/2) xI ω₀²
=( .9 - 2.5 )I ω₀²
= - 1.6 I ω₀² Ans