Answer:
Explanation:
As it’s difficult to catch it from up.
Gravitational force will pull us when we jump.
If gravity was not there, he could catch the ball. But he will float in the sky after that.
That’s the answer
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.
Answer:
The average speed of the elevator going down in the abandoned mine is 17.722mph.
Explanation:
If the elevator takes 90 seconds to descend a height of 713m, the average speed of the elevator is:

And if 1m/s is 2.23694mph, the average speed is:
.
First we need to convert the angular speed from rpm to rad/s. Keeping in mind that


the angular speed is

And so now we can calculate the tangential speed of the child, which is the angular speed times the distance of the child from the center of the motion: