1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arsen [322]
3 years ago
7

A sinusoidal wave has the following wave function: y(x,t) = (2.5 m) sin[(3.0 m-1) x – (24 s-1) t + π/2] What is the frequency of

this wave?
Physics
1 answer:
Vera_Pavlovna [14]3 years ago
4 0

Answer:

3.82 Hertz

Explanation:

y = 2.5 Sin\left (3x-24t+\frac{\pi }{2}  \right )

This is the equation of a wave which varies sinusoidally.

The standard equation of a wave is given by

y = A Sin\left ( kx-\omega t+\phi  \right )

where, A be the amplitude of the wave, k be the wave number, x be the displacement of wave, ω be the angular frequency and t be the time taken, and Ф be the phase angle.

now compare the given equation by the standard equation, we get

k = 3

ω = 24

Ф = π / 2

So, the angular frequency = 24

The relation between the angular frequency and the frequency is given by

ω = 2 x π x f

24 = 2 x 3.14 x f

f = 3.82 Hertz

You might be interested in
Does anyone know this?!
Valentin [98]

Answer:

2 is the numerical answer.

Explanation:

Hello there!

In this case, according to the given information and formula, it is possible for us to remember that equation for the calculation of the average kinetic energy of a gas is:

KE=\frac{3}{2} \frac{R}{N_A} T

Whereas R is the universal gas constant, NA the Avogadro's number and T the temperature.

Which means that for the given ratio, we can obtain the value as follows:

=\frac{\frac{3}{2} \frac{R}{N_A} T_1}{\frac{3}{2} \frac{R}{N_A} T_2} \\\\=\frac{T_1}{T_2} \\\\=\frac{500K}{250K} \\\\=2

Regards!

8 0
3 years ago
A hydrogen atom in a galaxy moving with a speed of 6.65×106 m/???? away from the Earth emits light with a wavelength of 5.13×10−
Mumz [18]

Answer:

The observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m.

Explanation:

Given that,

The actual wavelength of the hydrogen atom, \lambda_a=5.13\times 10^{-7}\ m

A hydrogen atom in a galaxy moving with a speed of, v=6.65\times 10^6\ m/s

We need to find the observed wavelength on Earth from that hydrogen atom. The speed of galaxy is given by :

v=c\times \dfrac{\lambda_o-\lambda_a}{\lambda_a}

\lambda_o is the observed wavelength

\lambda_o=\dfrac{v\lambda_a}{c}+\lambda_a\\\\\lambda_o=\dfrac{6.65\times 10^6\times 5.13\times 10^{-7}}{3\times 10^8}+5.13\times 10^{-7}\\\\\lambda_o=5.24\times 10^{-7}\ m

So, the observed wavelength on Earth from that hydrogen atom is 5.24\times 10^{-7}\ m. Hence, this is the required solution.

8 0
2 years ago
A sprinter set a high school record in track and field, running 200.0 m in 20.6 s . what is the average speed of the sprinter in
Paraphin [41]

Answer : The average speed of the sprinter is, 34.95 Km/hr

Solution :

Average velocity : It is defined as the distance traveled by the time taken.

Formula used for average velocity :

v_{av}=\frac{d}{t}

where,

v_{av} = average velocity

d = distance traveled = 200 m

t = time taken = 20.6 s

Now put all the given values in the above formula, we get the average velocity of the sprinter.

v_{av}=\frac{200m}{20.6s}\times \frac{3600}{1000}=34.95Km/hr

conversion :

(1 Km = 1000m)

(1 hr = 3600 s)

Therefore, the average speed of the sprinter is, 34.95 Km/hr

8 0
2 years ago
Read 2 more answers
Riders in a carnival ride stand with their backs against the wall of a circular room of diameter
Veseljchak [2.6K]

Answer:

option C

Explanation:

given,

diameter of circular room = 8 m

rotational velocity of the rider = 45 rev/min

                  = 45 \times \dfrac{2\pi}{60}

                  =4.712 rad/s

here in this case normal force is equal to centripetal force

N = m r ω²

N = m x 4 x 4.712²

N = 88.83m

frictional force = μ N

    = 88.83m x μ

now, for the body to not to slide

gravity force is equal to frictional force

m g = 88.83 m x μ

g = 88.83 x μ

9.8 = 88.83 x μ

 μ = 0.11

hence, the correct answer  is option C

6 0
3 years ago
The vapor pressure of benzene, C6H6, is 40.1 mmHg at 7.6°C. What is its vapor pressure at 60.6°C? The molar heat of vaporization
ANEK [815]

Answer:

The vapor pressure at 60.6°C is 330.89 mmHg

Explanation:

Applying Clausius Clapeyron Equation

ln(\frac{P_2}{P_1}) = \frac{\delta H}{R}[\frac{1}{T_1}- \frac{1}{T_2}]

Where;

P₂ is the final vapor pressure of benzene = ?

P₁ is the initial vapor pressure of benzene = 40.1 mmHg

T₂ is the final temperature of benzene = 60.6°C = 333.6 K

T₁ is the initial temperature of benzene = 7.6°C = 280.6 K

ΔH is the molar heat of vaporization of benzene = 31.0 kJ/mol

R is gas rate = 8.314 J/mol.k

ln(\frac{P_2}{40.1}) = \frac{31,000}{8.314}[\frac{1}{280.6}- \frac{1}{333.6}]\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.003564 - 0.002998)\\\\ln(\frac{P_2}{40.1}) = 3728.65  (0.000566)\\\\ln(\frac{P_2}{40.1}) = 2.1104\\\\\frac{P_2}{40.1} = e^{2.1104}\\\\\frac{P_2}{40.1} = 8.2515\\\\P_2 = (40.1*8.2515)mmHg = 330.89 mmHg

Therefore, the vapor pressure at 60.6°C is 330.89 mmHg

6 0
3 years ago
Read 2 more answers
Other questions:
  • A sound wave from a siren has an intensity of 111.2 W/m2 at a certain point, and a second sound wave from a nearby ambulance has
    10·1 answer
  • A student does 25 J of work on the handle of a pencil sharpener. If the pencil sharpener does 20 J of work on the pencil, what i
    13·1 answer
  • What is the definition of density?​
    8·1 answer
  • Why wheat flour is usually passed near magnet near a magnet before being packed
    8·1 answer
  • Who were Socrates and Plato
    8·2 answers
  • Which of the following is a befit participating in team sports?
    13·1 answer
  • If a burning log is a black object with a surface area of 0.25 m2 and a temperature of 800 8c, how much power does it emit as th
    11·1 answer
  • A point charge Q is located a distance d away from the center of a very long charged wire. The wire has length L >> d and
    11·1 answer
  • On a 150 m straight sprint, a cyclist accelerates from rest for 4.5 s at 3.8 m/s2. How long will it take her to complete the 150
    11·1 answer
  • How would you generate awareness in your school/society regarding renewable energy and its importances?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!