Answer:
ma = 48.48kg
Explanation:
To find the mass of the astronaut, you first calculate the mass of the chair by using the information about the period of oscillation of the empty chair and the spring constant. You use the following formula:
(1)
mc: mass of the chair
k: spring constant = 600N/m
T: period of oscillation of the chair = 0.9s
You solve the equation (1) for mc, and then you replace the values of the other parameters:
(2)
Next, you calculate the mass of the chair and astronaut by using the information about the period of the chair when the astronaut is sitting on the chair:
T': period of chair when the astronaut is sitting = 2.0s
M: mass of the astronaut plus mass of the chair = ?
(3)
Finally, the mass of the astronaut is the difference between M and mc (results from (2) and (3)) :

The mass of the astronaut is 48.48 kg
Their relative speed is the sum of 60 and 40 or 100km/hr. They will travel the 150km in 1.5 hrs. When two object approach each other, the closing speed is just the sum of the speeds, therefore, the closing speed is your case is 100kph. So they will meet in 1.5 hours.
There is more thermal energy in the lake because there is more water which is more thermal energy
Answer:
4.4721m
Explanation:
#Use Pythagorean theorem to find the distance between the two speakers:

There are antinodes 1/4,1/2 and 3/4 of the distance between speakers.
The greatest antinode is 3/4-1/4=1/2
#Distance between consecutive antinodes is:

Hence, the maximum possible wavelength of the sound waves is 4.4721m