Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
IM sure there is C, D, and E in kuiper belts, but not really sure of silicon and iron
Answer:
the human body isn't very efficient at converting food into useful work. The human body is less than 5% efficient most of the time. The rest of the energy is converted to heat, which may or may not be useful, depending on how cool or warm a person wants to be.
Explanation:
<span>The unknown substance is silver.
I don't see a list of available substances, but let's see if there's something reasonable available that will match. First, let's calculate the density of the unknown substance. Density is mass per volume, so
273 g / 26 mL = 10.5 g/mL
Looking up a list of elements sorted by density, I see the following:
10.07 Actinium
10.22 Molybdenum
10.5 Silver
11.35 Lead
And silver at 10.5 g/ml is a very nice match for the unknown substances' density of 10.5 g/ml.</span>
Answer:
1.23 m
Explanation:
The vertical distance covered by a free-falling object starting from rest in a time t is

where
g = 9.8 m/s^2 is the acceleration due to gravity
In this problem, we have
t = 0.50 s
So the distance covered is
