Answer:
ΔHr = -103,4 kcal/mol
Explanation:
<u>Using:</u>
<u>AH° (kcal/mol)
</u>
<u>Metano (CH)
</u>
<u>-17,9
</u>
<u>Cloro (CI)
</u>
<u>tetraclorometano (CCI)
</u>
<u>- 33,3
</u>
<u>Acido cloridrico (HCI)
</u>
<u>-22</u>
It is possible to obtain the ΔH of a reaction from ΔH's of formation for each compound, thus:
ΔHr = (ΔH products - ΔH reactants)
For the reaction:
CH₄(g) + Cl₂(g) → CCl₄(g) + HCl(g)
The balanced reaction is:
CH₄(g) + 4Cl₂(g) → CCl₄(g) + 4HCl(g)
The ΔH's of formation for these compounds are:
ΔH CH₄(g): -17,9 kcal/mol
ΔH Cl₂(g): 0 kcal/mol
ΔH CCl₄(g): -33,3 kcal/mol
ΔH HCl(g): -22 kcal/mol
The ΔHr is:
-33,3 kcal/mol × 1 mol + -22 kcal/mol× 4 mol - (-17,9 kcal/mol × 1 mol + 0kcal/mol × 4mol)
<em>ΔHr = -103,4 kcal/mol</em>
<em></em>
I hope it helps!
Answer:
The Earth formed billions of years after the Universe formed
Explanation:
The "universe" is said to have been formed <em>billions of year ago</em> through an explosion. This was called the <em>"Big Bang Theory." </em>This lead to the<u> expansion of the universe</u> owing to its high temperature and density. After which, the universe cooled down. Galaxies and stars were then formed. Some of the stars died due to explosion, which then led to the <u>creation of planets</u>. Such formation of the planets happened around <u>4.5 billion years ago.</u> This is <em>9.3 billions of years later</em> than the universe was formed<em> (13.8 billions of years ago)</em>. So, this explains the answer.
A because the outcome of this reaction exists a radical formed by the oxidation of an aromatic amine's or phenol's ring substituent. The hydroxyl group of a phenol serves as the ring substituent in this condition.
<h3>Which two enzyme types are required for the two-step process of converting cytosine to 5 hmC?</h3>
- The methyl group exists moved to cytosine in the first step, and it exists then hydroxylated in the second stage.
- Thus, a transferase and an oxidoreductase exist as the two groups of enzymes needed.
<h3>Which kind of interaction between proteins and the dextran column material is most likely to take place?</h3>
- Hydrogen bonding because the glucose's OH would create an H-bond with any disclosed polar side chains on a protein surface.
<h3>Two out of the four proteins would adhere to a cation-exchange column at what buffer pH?</h3>
- Only positively charged proteins can attach to a cation-exchange column, and this can only occur when the pH exists lower than the pI.
- Proteins A and B would both be positively charged at pH 7.0.
To learn more about hydroxyquinoline refer to:
brainly.com/question/26102339
#SPJ4
Answer: option B. The kinetic energy of gas molecules is directly proportional to the Kelvin temperature of the gas.
Explanation:
The kinetic theory of gases explains the behavior and properties of gases from a molecular perspective.
Specifically and explicity, the kinetic theory of gases states that gases are constituted by particles (molecules) and that the average kinetic energy of the particles is proportional to the absolute temperature (Kelvin scale) of the gas. Furthermore, the temperature of all the (ideal) gases is the same at a given temperature.
Hence, you know that the higher the temperature of the gas, the higher the kinetic energy and the average speed of the molecules.
Other postulates of the kinetic theory of gases are that: i) the volume of the particles is neglectible; ii) the particles do not exhibit intermolecular attraction or repulsion; iii) the particles are in continuous random motion in straight paths, until they collide with other particles or the walls of the vessel, and iv) the collisions are elastic (the energy is conserved).