Hydrogen bonds are typically stronger than Van der Waals forces bc they are based on permanent dipoles, that form when hydrogen comes in vicinity of a highly electronegative atom (like F, N, or O). These bonds are long-lasting and pretty strong.
Answer:
Explanation:
2S + 3O₂ = 2SO₃
2moles 3 moles
2 moles of S react with 3 moles of O₂
5 moles of S will react with 3 x 5 / 2 moles of O₂
= 7.5 moles of O₂ .
O₂ remaining unreacted = 10 - 7.5 = 2.5 moles .
All the moles of S will exhausted in the reaction and 2.5 moles of oxygen will be left .
Answer:
56.28 g
Explanation:
First change the grams of oxygen to moles.
(50.00 g)/(32.00 g/mol) = 1.5625 mol O₂
You have to use stoichiometry for the next part. Looking at the equation, you can see that for every 2 moles of H₂O, 1 mole of O₂ is produced. Convert from moles of O₂ to moles of H₂O using this relation.
(1.5625 mol O₂) × (2 mol H₂O/1 mol O₂) = 3.125 mol H₂O
Now convert moles of H₂O to grams.
(3.125 mol) × (18.01 g/mol) = 56.28125 g
Convert to significant figures.
56.28125 ≈ 56.28
Answer:
26.95 %
Explanation:
Air contains the highest percentage of oxygen and nitrogen gases. Magnesium then combines with both of the gases:


Firstly, find the total number of moles of magnesium metal:

Let's say that x mol react in the first reaction and y mol react in the second reaction. This means:

According to stoichiometry, we form:

Multiplying moles by the molar mass of each substance will yield mass. This means we form a total of:

The total mass is given, so we have our second equation to solve:

We have two unknowns and two equations, we may then solve:


Express y from the first equation:

Substitute into the second equation:





Moles of nitride formed:

Convert this to mass:

Find the percentage:
