Answer:
The concentration of COF₂ at equilibrium is 0.296 M.
Explanation:
To solve this equilibrium problem we use an ICE Table. In this table, we recognize 3 stages: Initial(I), Change(C) and Equilibrium(E). In each row we record the <em>concentrations</em> or <em>changes in concentration</em> in that stage. For this reaction:
2 COF₂(g) ⇌ CO₂(g) + CF₄(g)
I 2.00 0 0
C -2x +x +x
E 2.00 - 2x x x
Then, we replace these equilibrium concentrations in the Kc expression, and solve for "x".
![Kc=8.30=\frac{[CO_{2}] \times [CF_{4}] }{[COF_{2}]^{2} } =\frac{x^{2} }{(2.00-2x)^{2} } \\8.30=(\frac{x}{2.00-2x} )^{2} \\\sqrt{8.30} =\frac{x}{2.00-2x}\\5.76-5.76x=x\\x=0.852](https://tex.z-dn.net/?f=Kc%3D8.30%3D%5Cfrac%7B%5BCO_%7B2%7D%5D%20%5Ctimes%20%5BCF_%7B4%7D%5D%20%7D%7B%5BCOF_%7B2%7D%5D%5E%7B2%7D%20%7D%20%3D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%282.00-2x%29%5E%7B2%7D%20%7D%20%5C%5C8.30%3D%28%5Cfrac%7Bx%7D%7B2.00-2x%7D%20%29%5E%7B2%7D%20%5C%5C%5Csqrt%7B8.30%7D%20%3D%5Cfrac%7Bx%7D%7B2.00-2x%7D%5C%5C5.76-5.76x%3Dx%5C%5Cx%3D0.852)
The concentration of COF₂ at equilibrium is 2.00 -2x = 2.00 - 2 × 0.852 = 0.296 M
The equation would be NaBr
Answer: The pH of an aqueous solution of .25M acetic acid is 2.7
Explanation:

cM 0 0
So dissociation constant will be:

Give c= 0.25 M and
= ?

Putting in the values we get:


![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)
![[H^+]=0.25\times 0.0084=0.0021](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.25%5Ctimes%200.0084%3D0.0021)
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![pH=-log[0.0021]=2.7](https://tex.z-dn.net/?f=pH%3D-log%5B0.0021%5D%3D2.7)
Thus pH is 2.7
Answer:
Our energy supply comes mainly from fossil fuels, with nuclear power and renewable sources rounding out the mix.
The energy associated with an object's motion is called kinetic energy. Kinetic energy is the energy of motion. All moving objects have kinetic energy
Explanation:
Answer:
this isn't immediately clear, it can be seen in ... CO2? 1. 6.0 × 10−23 g. 2. 44 g. 3. 7.31 × 10−23 g correct. 4. 6.0 × 10. 23 g. 5. 7.31 × 10 ... 40.0 grams of S will react leaving 10.0 grams. S unreacted. 013. 10.0 points ... FeCl2 and K2CO3 is ... 9. 1. There is no reaction. 2. KCl electrolyte. 3. CO2 gas. 4. FeCO3 precipitate. correct.
Explanation: